In the presence of the substrate, various structural and dynamical properties of two-dimensional dusty plasma (2DDP) were investigated using Langevin dynamical simulations. This paper reviews a series of results of the structural and dynamical properties of 2DDP modified by one-dimensional periodic substrates (1DPSs) as follows. First, when the depth of the 1DPS increases gradually, it is found that the static structural order of 2DDP along each potential well of the 1DPS increases first and then decreases gradually. When the width of the 1DPS increases gradually, the particle arrangement in each potential well of the 1DPS changes from one straight row gradually to two rows, including the stable zigzag structure. Second, when there are two rows in each potential well of the 1DPS, the phonon spectra are split into two branches, corresponding to the breathing and sloshing modes, respectively. In addition, due to the pure repulsion between dust particles, from the obtained phonon spectra, the sloshing wave propagates backward at small wave numbers. Third, the calculated mean square displacement shown that, at the intermediate timescale between the initial ballistic and final diffusive motions, the particle motion tends to be more subdiffusive while the depth of the 1DPS increases. While the width of the 1DPS increases gradually, the long-time diffusive motion first increases, then decreases, and finally increases again, exhibiting the oscillation-like diffusion, due to the stable zigzag structure. Finally, when an external direct-current driving force is applied on all particles of 2DDP, three different depinning phases are discovered, which are the pinned, disordered plastic flow, and moving ordered states, respectively, as the driving force increases from zero. In addition, the continuous/discontinuous property of the phase transition between these different depinning states is investigated, showing that the transition property is modulated by the depth of the applied 1DPS.

1.
V. E.
Fortov
,
A. V.
Ivlev
,
S. A.
Khrapak
,
A. G.
Khrapak
, and
G. E.
Morfill
,
Phys. Rep.
421
,
1
(
2005
).
2.
G. E.
Morfill
and
A. V.
Ivlev
,
Rev. Mod. Phys.
81
,
1353
(
2009
).
3.
A.
Piel
,
Plasma Physics
(
Springer
,
Heidelberg
,
2010
).
4.
M.
Bonitz
,
C.
Henning
, and
D.
Block
,
Rep. Prog. Phys.
73
,
066501
(
2010
).
5.
R. L.
Merlino
and
J. A.
Goree
,
Phys. Today
57
(
7
),
32
(
2004
).
6.
Y.
Feng
,
J.
Goree
, and
B.
Liu
,
Phys. Rev. Lett.
100
,
205007
(
2008
).
7.
E.
Thomas
, Jr.
,
J. D.
Williams
, and
J.
Sliver
,
Phys. Plasmas
11
,
L37
(
2004
).
8.
P. K.
Shukla
and
A. A.
Mamun
,
Introduction to Dusty Plasma Physics
(
Institute of Physics
,
Bristol
,
2002
).
9.
G. S.
Selwyn
,
J.
Singh
, and
R. S.
Bennett
,
J. Vac. Sci. Technol.
7
,
2758
(
1989
).
10.
A. Y.
Pigarov
,
S. I.
Krasheninnikov
,
T. K.
Soboleva
, and
T. D.
Rognlien
,
Phys. Plasmas
12
,
122508
(
2005
).
11.
S. I.
Krasheninnikov
,
R. D.
Smirnov
,
A. Y.
Pigarov
,
T. K.
Soboleva
, and
D. A.
Mendis
,
J. Plasma Phys.
76
,
377
(
2010
).
12.
J.
Goree
,
B.
Liu
, and
Y.
Feng
,
Plasma Phys. Controlled Fusion
55
,
124004
(
2013
).
13.
A.
Melzer
,
A.
Homann
, and
A.
Piel
,
Phys. Rev. E
53
,
2757
(
1996
).
14.
Y.
Feng
,
J.
Goree
, and
B.
Liu
,
Phys. Rev. Lett.
104
,
165003
(
2010
).
15.
V.
Nosenko
and
J.
Goree
,
Phys. Rev. Lett.
93
,
155004
(
2004
).
16.
B.
Liu
,
J.
Goree
, and
Y.
Feng
,
Phys. Rev. Lett.
105
,
085004
(
2010
).
17.
H.
Thomas
,
G.
Morfill
,
V.
Demmel
,
J.
Goree
,
B.
Feuerbacher
, and
D.
Möhlmann
,
Phys. Rev. Lett.
73
,
652
(
1994
).
18.
J. H.
Chu
and
I.
Lin
,
Phys. Rev. Lett.
72
,
4009
(
1994
).
19.
Y.
Feng
,
J.
Goree
,
B.
Liu
, and
E. G. D.
Cohen
,
Phys. Rev. E
84
,
046412
(
2011
).
20.
U.
Konopka
,
G. E.
Morfill
, and
L.
Ratke
,
Phys. Rev. Lett.
84
,
891
(
2000
).
21.
H.
Yukawa
,
Proc. Phys.-Math. Soc. Jpn.
17
,
48
(
1935
).
22.
A.
Melzer
,
V. A.
Schweigert
, and
A.
Piel
,
Phys. Rev. Lett.
83
,
3194
(
1999
).
23.
Y.
Feng
,
J.
Goree
, and
B.
Liu
,
Phys. Plasmas.
18
,
057301
(
2011
).
24.
K.
Qiao
and
T. W.
Hyde
,
Phys. Rev. E
68
,
046403
(
2003
).
25.
P.
Hartmann
,
A. Z.
Kovács
,
A. M.
Douglass
,
J. C.
Reyes
,
L. S.
Matthews
, and
T. W.
Hyde
,
Phys. Rev. Lett.
113
,
025002
(
2014
).
26.
H. M.
Thomas
and
G. E.
Morfill
,
Nature
379
,
806
(
1996
).
27.
Z.
Donkó
,
P.
Hartmann
, and
G. J.
Kalman
,
Phys. Rev. E
69
(
R
),
065401
(
2004
).
28.
C.-L.
Chan
and
I.
Lin
,
Phys. Rev. Lett.
98
,
105002
(
2007
).
29.
Y.
Feng
,
J.
Goree
, and
B.
Liu
,
Phys. Rev. Lett.
109
,
185002
(
2012
).
30.
Y.
Feng
,
J.
Goree
, and
B.
Liu
,
Phys. Rev. E
86
,
056403
(
2012
).
31.
R. A.
Quinn
and
J.
Goree
,
Phys. Rev. E
64
,
051404
(
2001
).
32.
V.
Nosenko
,
S.
Nunomura
, and
J.
Goree
,
Phys. Rev. Lett.
88
,
215002
(
2002
).
33.
B.
Liu
and
J.
Goree
,
Phys. Rev. Lett.
100
,
055003
(
2008
).
34.
Z.
Donkó
,
J.
Goree
,
P.
Hartmann
, and
B.
Liu
,
Phys. Rev. E
79
,
026401
(
2009
).
35.
S.
Nunomura
,
D.
Samsonov
,
S.
Zhanov
, and
G.
Morfill
,
Phys. Rev. Lett.
96
,
015003
(
2006
).
36.
Y.
Feng
,
J.
Goree
,
B.
Liu
,
T. P.
Intrator
, and
M. S.
Murillo
,
Phys. Rev. E
90
,
013105
(
2014
).
37.
S.
Nunomura
,
D.
Samsonov
,
S.
Zhdanov
, and
G.
Morfill
,
Phys. Rev. Lett.
95
,
025003
(
2005
).
38.
J. W.
Reijnders
and
R. A.
Duine
,
Phys. Rev. Lett.
93
,
060401
(
2004
).
39.
P.
Martinoli
,
Phys. Rev. B
17
,
1175
(
1978
).
40.
L. S.
Levitov
,
Phys. Rev. Lett.
66
,
224
(
1991
).
41.
D.
Jaquel
,
J. I.
González
,
J. I.
Martín
,
J. V.
Anguita
, and
J. L.
Vicent
,
Appl. Phys. Lett.
81
,
2851
(
2002
).
42.
P. J. W.
Moll
,
L.
Balicas
,
X.
Zhu
,
H.-H.
Wen
,
N. D.
Zhigadlo
,
J.
Karpinski
, and
B.
Batlogg
,
Phys. Rev. Lett.
113
,
186402
(
2014
).
43.
I.
Guillamón
,
R.
Córdoba
,
J.
Sesé
,
J. M.
De Teresa
,
M. R.
Ibarra
,
S.
Vieira
, and
H.
Suderow
,
Nat. Phys.
10
,
851
(
2014
).
44.
Q.
Le Thien
,
D.
McDermott
,
C. J. O.
Reichhardt
, and
C.
Reichhardt
,
Phys. Rev. B
93
,
014504
(
2016
).
45.
J.
Hu
and
R. M.
Westervelt
,
Phys. Rev. B
55
,
771
(
1997
).
46.
47.
S. N.
Coppersmith
,
D. S.
Fisher
,
B. I.
Halperin
,
P. A.
Lee
, and
W. F.
Brinkman
,
Phys. Rev. B
25
,
349
(
1982
).
48.
A.
Vanossi
,
N.
Manini
,
M.
Urbakh
,
S.
Zapperi
, and
E.
Tosatti
,
Rev. Mod. Phys.
85
,
529
(
2013
).
49.
A.
Chowdhury
,
B. J.
Ackerson
, and
N. A.
Clark
,
Phys. Rev. Lett.
55
,
833
(
1985
).
50.
Q. H.
Wei
,
C.
Bechinger
,
D.
Rudhardt
, and
P.
Leiderer
,
Phys. Rev. Lett.
81
,
2606
(
1998
).
51.
E.
Frey
,
D.
Nelson
, and
L.
Radzihovsky
,
Phys. Rev. Lett.
83
,
2977
(
1999
).
52.
C.
Bechinger
and
E.
Frey
,
J. Phys.: Condens. Matter
13
,
R321
(
2001
).
53.
L.
Zaidouny
,
T.
Bohlein
,
R.
Roth
, and
C.
Bechinger
,
Soft Matter
9
,
9230
(
2013
).
54.
K.
Loudiyi
and
B.
Ackerson
,
Physica A
184
,
1
(
1992
).
55.
J.
Chakrabarti
,
H. R.
Krishnamurthy
, and
A. K.
Sood
,
Phys. Rev. Lett.
73
,
2923
(
1994
).
56.
C.
Bechinger
,
M.
Brunner
, and
P.
Leiderer
,
Phys. Rev. Lett.
86
,
930
(
2001
).
57.
K.
Loudiyi
and
B.
Ackerson
,
Physica A
184
,
26
(
1992
).
58.
S.
Herrera-Velarde
and
R.
Castañeda-Priego
,
J. Phys.: Condens. Matter
19
,
226215
(
2007
).
59.
C.
Reichhardt
and
C. J. O.
Reichhardt
,
Phys. Rev. E
72
,
032401
(
2005
).
60.
D.
McDermott
,
J.
Amelang
,
L. M.
Lopatina
,
C. J. O.
Reichhardt
, and
C.
Reichhardt
,
Soft Matter
9
,
4607
(
2013
).
61.
K.
Wang
,
W.
Li
,
D.
Huang
,
C.
Reichhardt
,
C. J. O.
Reichhardt
,
M. S.
Murillo
, and
Y.
Feng
,
Phys. Rev. E
98
,
063204
(
2018
).
62.
W.
Li
,
D.
Huang
,
C.
Reichhardt
,
C. J. O.
Reichhardt
,
M. S.
Murillo
, and
Y.
Feng
,
Phys. Rev. E
98
,
063203
(
2018
).
63.
W.
Li
,
K.
Wang
,
C.
Reichhardt
,
C. J. O.
Reichhardt
,
M. S.
Murillo
, and
Y.
Feng
,
Phys. Rev. E
100
,
033207
(
2019
).
64.
W.
Li
,
C.
Reichhardt
,
C. J. O.
Reichhardt
,
M. S.
Murillo
, and
Y.
Feng
,
Phys. Plasmas
27
,
033702
(
2020
).
65.
L.
Gu
,
W.
Li
,
C.
Reichhardt
,
C. J. O.
Reichhardt
,
M. S.
Murillo
, and
Y.
Feng
,
Phys. Rev. E
102
,
063203
(
2020
).
66.
T.
Bohlein
and
C.
Bechinger
,
Phys. Rev. Lett.
109
,
058301
(
2012
).
67.
Y.
Feng
,
W.
Lin
, and
M. S.
Murillo
,
Phys. Rev. E
96
,
053208
(
2017
).
68.
I. V.
Schweigert
,
V. A.
Schweigert
,
A.
Melzer
, and
A.
Piel
,
Phys. Rev. E
62
,
1238
1244
(
2000
).
69.
Z.
Donkó
,
J.
Goree
, and
P.
Hartmann
,
Phys. Rev. E
81
,
056404
(
2010
).
70.
A.
Melzer
,
A.
Schella
,
J.
Schablinski
,
D.
Block
, and
A.
Piel
,
Phys. Rev. E
87
,
033107
(
2013
).
71.
G. J.
Kalman
,
P.
Hartmann
,
Z.
Donkó
, and
M.
Rosenberg
,
Phys. Rev. Lett.
92
,
065001
(
2004
).
72.
H.
Ohta
and
S.
Hamaguchi
,
Phys. Rev. Lett.
84
,
6026
(
2000
).
73.
Y. H.
Liu
,
B.
Liu
,
Y. P.
Chen
,
S. Z.
Yang
,
L.
Wang
, and
X. G.
Wang
,
Phys. Rev. E
67
,
066408
(
2003
).
74.
D. V.
Tkachenko
,
T. E.
Sheridan
, and
V. R.
Misko
,
Phys. Plasmas
18
,
103709
(
2011
).
75.
76.
B.
Liu
,
K.
Avinash
, and
J.
Goree
,
Phys. Rev. Lett.
91
,
255003
(
2003
).
77.
S.
Nunomura
,
J.
Goree
,
S.
Hu
,
X.
Wang
, and
A.
Bhattacharjee
,
Phys. Rev. E
65
,
066402
(
2002
).
78.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Clarendon
,
Oxford
,
1954
).
79.
R. D. L.
Hanes
and
S. U.
Egelhaaf
,
J. Phys.: Condens. Matter
24
,
464116
(
2012
).
80.
S.
Herrera-Velarde
and
R.
Castañeda-Priego
,
Phys. Rev. E
79
,
041407
(
2009
).
81.
A.
Asaklil
,
Y.
Boughaleb
,
M.
Mazroui
,
M.
Chhib
, and
L. E.
Arroum
,
Solid State Ionics
159
,
331
(
2003
).
82.
M.
Porto
,
M.
Urbakh
, and
J.
Klafter
,
Phys. Rev. E
65
,
011108
(
2001
).
83.
R.
Ferrando
,
F.
Montalenti
,
R.
Spadacini
, and
G. E.
Tommei
,
Phys. Rev. E
61
(
6
),
6344
(
2000
).
84.
P.
Hartmann
,
G. J.
Kalman
,
Z.
Donkó
, and
K.
Kutasi
,
Phys. Rev. E
72
,
026409
(
2005
).
85.
C.
Reichhardt
and
C. J. O.
Reichhardt
,
Rep. Prog. Phys.
80
,
026501
(
2017
).
86.
K.
Moon
,
R. T.
Scalettar
, and
G. T.
Zimányi
,
Phys. Rev. Lett.
77
,
2778
(
1996
).
87.
C.
Reichhardt
,
C. J.
Olson
, and
F.
Nori
,
Phys. Rev. Lett.
78
,
2648
2651
(
1997
).
88.
A.
van Ooyen
and
J.
van Pelt
, “
Phase transitions, hysteresis and overshoot in developing neural networks
,” in
Artificial Neural Networks, 2, Proc. ICANN'92
, edited by
I.
Aleksander
and
J.
Taylor
(
Elsevier
,
Amsterdam
,
1992
), pp.
907
910
.
89.
J. M.
Schwarz
and
D. S.
Fisher
,
Phys. Rev. E
67
,
021603
(
2003
).
90.
C.
Reichhardt
,
C. J.
Olson
, and
F.
Nori
,
Phys. Rev. B
58
,
6534
6564
(
1998
).
You do not currently have access to this content.