Reduction of flow compressibility with the corresponding ideally invariant helicities, universally for various fluid models of neutral and ionized gases, can be argued statistically and associated with the geometrical scenario in the Taylor–Proudman theorem and its analogs. A “chiral base flow/field,” rooted in the generic intrinsic local structure, as well as an “equivalence principle,” is explained and used to bridge the single-structure mechanics and the helical statistics. The electric field fluctuations may similarly be depressed by the (self-)helicities of the two-fluid plasma model, with the geometry lying in the relation between the electric and density fields in a Maxwell equation.

1.
V. I.
Arnold
and
B. A.
Khesin
,
Topological Methods in Hydrodynamics
(
Springer
,
1998
).
2.
P. J.
Morrison
,
Rev. Mod. Phys.
70
(
2
),
467
521
(
1998
).
3.
E.
Morse
,
Nuclear Fusion, Graduate Texts in Physics
(
Springer Nature Switzerland AG
,
2018
), Chap. 9.
4.
R.
Lorenzini
,
E.
Martines
,
P.
Piovesan
,
D.
Terranova
,
P.
Zanca
,
M.
Zuin
,
A.
Alfier
,
D.
Bonfiglio
,
F.
Bonomo
,
A.
Canton
 et al.,
Nat. Phys.
5
,
570
574
(
2009
).
5.
B.
Srinivasan
and
U.
Shumlak
,
Phys. Plasmas
18
,
092113
092622
(
2011
).
6.
W. H.
Matthaeus
and
M. L.
Goldstein
,
J. Geophys. Res.
87
,
6011
6028
(
1982
).
7.
D.
Balsara
and
A.
Pouquet
,
Phys. Plasmas
6
,
89
99
(
1999
).
8.
M.
Christensson
and
M.
Hindmarsh
,
Phys. Rev. E
64
,
056405
(
2001
).
9.
P.
Sagaut
and
C.
Cambon
,
Homogeneous Turbulence Dynamics
(
Cambridge University Press
,
Cambridge
,
2008
);
10.
R.
Schlickeiser
,
Cosmic Ray Astrophysics
(
Springer
,
2002
).
11.
L. C.
Steinhauer
and
A.
Ishida
,
Phys. Plasmas
5
,
2609
2622
(
1998
).
12.
R.
Dung
and
R.
Schlickeiser
,
Astron. Astrophys.
237
,
504
(
1990
);
R.
Dung
and
R.
Schlickeiser
,
Astron. Astrophys.
240
,
537
(
1990
).
13.
B.
Teaca
,
M. S.
Weidl
,
F.
Jenko
, and
R.
Schlickeiser
,
Phys. Rev. E
90
,
021101(R)
(
2014
).
14.
J.-Z.
Zhu
,
J. Fluid Mech.
787
,
440
(
2016
).
15.
U.
Frisch
,
A.
Pouquet
,
J.
Leorat
, and
A.
Mazure
,
J. Fluid Mech.
68
,
769
(
1975
).
16.
L.
Biferale
,
S.
Musacchio
, and
F.
Toschi
,
Phys. Rev. Lett.
108
,
164501
(
2012
).
17.
F.
Waleffe
,
Phys. Fluids A
4
,
350
363
(
1992
).
18.
A modified unconserved cross-helicity is considered by
S.
Banerjee
and
S.
Galtier
,
Phys. Rev. E
87
,
013019
(
2013
).
19.
M.
Linkmann
,
A.
Berera
,
M.
McKay
, and
J.
Jäger
,
J. Fluid Mech.
791
,
61
96
(
2016
).
20.
R. H.
Kraichnan
,
J. Acoust. Soc. Am.
27
,
438
(
1955
).
21.
Y.
Yang
and
J.-Z.
Zhu
, “
Reducing the noise level by controlling the degree of chirality
,” in
Chinese Conference on Computational Mechanics in Conjunction with International Symposium on Computational Mechanics (CCCM-ISCM'2016)
, Hangzhou, China, October 16–20 (
2016
);
J.-Z.
Zhu
,
Y.
Yang
, and
J.
Peng
, “
Driven (statistical-steady-state) compressible helical turbulence
,” in
First Aerodynamic Conference of China, Mianyang, Sichuang, China
(
2018
).
22.
P.
Clark di Leoni
,
P. D.
Mininni
, and
M.-E.
Brachet
,
Phys. Rev. A
94
,
043605
(
2016
).
23.
R.-H.
Kraichnan
,
J. Fluid Mech.
59
,
745
(
1973
).
24.
G.
Miloshevich
,
M.
Lingam
, and
P. J.
Morrison
,
New J. Phys.
19
,
015007
(
2017
).
25.
H. K.
Moffatt
,
Magnetic Field Generation in Electrically Conducting Fluids
(
Cambridge University Press
,
1978
).
26.
N.
Besse
and
U.
Frisch
,
J. Fluid Mech.
825
,
412
478
(
2017
).
27.
M.
Lingam
,
G.
Miloshevich
, and
P.
Morrison
,
Phys. Lett. A
380
,
2400
2406
(
2016
).
28.
R. Z.
Sagdeev
,
S. S.
Moiseev
,
A. V.
Tur
, and
V. V.
Yanovskii
, in
Nonlinear Phenomena in Plasma Physica and Hydroclynamics
, edited by
R. Z.
Sagdeev
(
Mir
,
Moscow
,
1986
), pp.
137
182
.
29.
A. V.
Tur
and
V. V.
Yanovsky
,
J. Fluid Mech.
248
,
67
(
1993
).
30.
J.-Z.
Zhu
,
Phys. Fluids
30
,
037104
(
2018
).
31.
S.
Servidio
,
V.
Carbon
,
L.
Primavera
,
P.
Veltri
, and
K.
Stasiewicz
,
Planet. Space Sci.
55
,
2239
2243
(
2007
).
32.
A.
Brandenburg
,
Astrophys. J.
550
,
824
840
(
2001
);
J.
Cho
and
A.
Lazarian
,
Theor. Comput. Fluid Dyn.
19
,
127
157
(
2005
).
33.
L.
Yang
,
H.
Li
,
S. T.
Li
,
L.
Zhang
,
J. S.
He
, and
X. S.
Feng
,
Mon. Not. R. Astron. Soc.
488
,
859
867
(
2019
).
34.
B.
Banerjee
and
N.
Andrés
,
Phys. Rev. E
101
,
043212
(
2020
).
35.
N.
Andrés
,
S.
Galtier
, and
F.
Sahraoui
,
Phys. Rev. E
94
,
063206
(
2016
).
36.
M. E.
Wiedenbeck
,
R.
Bučík
,
G. M.
Mason
,
G. C.
Ho
,
R. A.
Leske
,
C. M. S.
Cohen
,
E. R.
Christian
,
A. C.
Cummings
,
A. J.
Davis
,
M. I.
Desai
 et al.,
Astrophys. J. Suppl. Ser.
246
,
42
(
2020
).
37.
T.-D.
Lee
,
Q. Appl. Math.
10
,
69
74
(
1952
).
38.
J.-Z.
Zhu
,
W.
Yang
, and
G.-Y.
Zhu
,
J. Fluid. Mech.
739
,
479
501
(
2014
).
39.
For example, recently, the explanation of the “bottleneck” problem by
U.
Frisch
,
S.
Kurien
,
R.
Pandit
,
W.
Pauls
,
S. S.
Ray
,
A.
Wirth
, and
J.-Z.
Zhu
,
Phys. Rev. Lett.
101
,
144501
(
2008
);
[PubMed]
the extension of the idea to kinetic models of plasmas by
J.-Z.
Zhu
and
G.
Hammett
,
Phys. Plasmas
17
,
122307
(
2010
);
and, the generalization of the technique combined with “random decimations” by
U.
Frisch
,
A.
Pomyalov
,
I.
Procaccia
, and
S. S.
Ray
,
Phys. Rev. Lett.
108
,
074501
(
2012
).
[PubMed]
40.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Dover
,
1961
).
41.
J.-Z.
Zhu
, “
Fast rotating flows in high spatial dimensions
” (unpublished) (
2020
); see also arXiv:1905.11783.
42.
J.-Z.
Zhu
,
Phys. Fluids
30
,
031703
(
2018
);
J.-Z.
Zhu
, “
Vorticity Lie-invariant decomposition theorem for barotropic real Schur flows
” (unpublished) (
2021
).
43.
Z.
Li
,
X.-W.
Zhang
, and
F.
He
,
Acta Phys. Sin.
63
,
054704
(
2014
).
44.
G. I.
Taylor
,
Proc. R. Soc. London, Ser. A
100
,
114
121
(
1921
).
45.
R.
Betchov
,
Phys. Fluids
4
,
925
(
1961
).
46.
A.
Pouquet
and
P. D.
Mininni
,
Philos. Trans. R. Soc. A
368
,
1635
1662
(
2010
).
47.
R. H.
Kraichnan
,
Phys. Fluids
7
,
1723
1734
(
1964
).
48.
U.
Frisch
,
Turbulence: The Legacy of A. N. Kolmogorov
(
Cambridge University Press
,
1995
).
49.
G. L.
Eyink
,
Phys. Lett. A
368
,
486
490
(
2007
).
50.

There may still be a little vagueness in the phrase “statistically identical,” which would, then, require extra elaboration: we can imagine that each (g) CBF of the “gas” for modeling the turbulence actually represent an ensemble of (g) CBFs whose statistics are identically specified (partly) by at least the energy and helicity spectra here, say.

51.
S.
Weinberg
,
Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity
(
John Wiley & Sons, Inc
.,
1972
).
52.

This would correspond, in the context of the loose analogy with GR, to studying the transformation to eliminate the local connection to obtain the locally inertial frame, which to the best of our knowledge (cf. Ref. 51) has neither been well performed in GR.

53.
G.
Miloshevich
,
P. J.
Morrison
, and
E.
Tassi
,
Phys. Plasmas
25
,
072303
(
2018
).
54.
S.
Servidio
,
W. H.
Matthaeus
, and
V.
Carbone
,
Phys. Plasmas
15
,
042314
(
2008
).
55.
J.-Z.
Zhu
,
Mon. Not. R. Astron. Soc.
470
,
L87
L91
(
2017
).
56.
Z.-W.
Xia
,
C.-H.
Li
,
D.-D.
Zou
, and
W.-H.
Yang
,
Chin. Phys. Lett.
34
,
015201
(
2017
).
57.
M. J.
Lighthill
,
Proc. R. Soc. London, Ser. A
21
,
564
587
(
1952
).
58.
S. C.
Crow
,
Stud. Appl. Math.
49
,
21
46
(
1970
).
59.
M.
Wang
,
J. B.
Freund
, and
S. K.
Lele
,
Annu. Rev. Fluid Mech.
38
,
483
512
(
2006
).
60.
R. H.
Kraichnan
,
J. Acoust. Soc. Am.
25
,
1096
1104
(
1953
).
61.
Cf., e.g., the production calculation of
I.
Proudman
,
Proc. R. Soc. London, Ser. A
214
,
119
132
(
1952
).
62.
J. V.
Shebalin
,
J. Plasma Phys.
72
,
507
524
(
2006
).
63.
A.
Pouquet
,
U.
Frisch
, and
J.
Léorat
,
J. Fluid Mech.
77
,
321
354
(
1976
).
64.
C.
Markakis
,
K.
Uryū
,
E.
Gourgoulhon
,
J.-P.
Nicolas
,
N.
Andersson
,
A.
Pouri
, and
V.
Witzany
,
Phys. Rev. D
96
,
064019
(
2017
).
65.
W.
Matthaeus
,
A.
Pouquet
,
P. D.
Mininni
,
D.
Dmitruk
, and
B.
Breech
,
Phys. Rev. Lett.
100
,
085003
(
2008
).
66.
C.-Y.
Tu
and
E.
Marsch
,
Space Sci. Rev.
73
,
1
(
1995
).
67.
E. B.
Sonin
,
Rev. Mod. Phys.
59
,
87
(
1987
); where it is also possible to extend the study with the circulation and Taylor–Proudman theorems in the nonlinear and compressible setting.
68.
D. D.
Holm
and
B.
Kupershmidt
,
Phys. Rev. A
36
,
3947
(
1987
).
You do not currently have access to this content.