Magnetic flux ropes have been successfully created with plasma guns in the newly commissioned PHAse Space MApping (PHASMA) experiment. The flux ropes exhibit the expected m =1 kink instability. The observed threshold current for the onset of this kink instability is half of the Kruskal–Shafranov current limit, consistent with predictions for the non-line tied boundary condition of PHASMA. The helicity, paramagnetism, and growth rate of the observed magnetic fluctuations are also consistent with kink instability predictions. The observed fluctuation frequency appears to be a superposition of a real frequency due to a Doppler shift of the kink mode arising from plasma flow ( 2 kHz) and a contribution from a wave mode ( 5 kHz). The dispersion of the wave mode is consistent with an Alfvén wave. Distinct from most previous laboratory studies of flux ropes, the working gas in PHASMA is argon. Thus, the ion cyclotron frequency in PHASMA is quite low and the frequency of the Alfvénic mode plateaus at 0.5 of the ion gyro frequency with increasing background magnetic field strength.

1.
J. P.
Freidberg
,
Ideal Magnetohydrodynamics
, Cellular Organelles (
Plenum Press
,
1987
).
2.
T.
Sakurai
,
Publ. Astron. Soc. Jpn.
28
,
177
(
1976
).
3.
R.
Liu
,
B.
Kliem
,
V. S.
Titov
,
J.
Chen
,
Y.
Wang
,
H.
Wang
,
C.
Liu
,
Y.
Xu
, and
T.
Wiegelmann
,
Astrophys. J.
818
,
148
(
2016
).
4.
D. M.
Rust
and
A.
Kumar
,
Astrophys. J.
464
,
L199
(
1996
).
5.
A.
Vourlidas
,
Plasma Phys. Controlled Fusion
56
,
064001
(
2014
).
6.
M.
Janvier
,
J. Plasma Phys.
83
,
535830101
(
2017
).
7.
R. C.
Jennison
and
M. K.
Das Gupta
,
Nature
172
,
996
(
1953
).
8.
I. T.
Chapman
,
Plasma Phys. Controlled Fusion
53
,
013001
(
2011
).
9.
S. C.
Hsu
and
P. M.
Bellan
,
Phys. Rev. Lett.
90
,
215002
(
2003
).
10.
M.
Kruskal
and
J. L.
Tuck
,
Proc. R. Soc. London, A
245
(493),
222
(
1958
).
11.
I.
Furno
,
T. P.
Intrator
,
D. D.
Ryutov
,
S.
Abbate
,
T.
Madziwa-Nussinov
,
A.
Light
,
L.
Dorf
, and
G.
Lapenta
,
Phys. Rev. Lett.
97
,
015002
(
2006
).
12.
D. D.
Ryutov
,
I.
Furno
,
T. P.
Intrator
,
S.
Abbate
, and
T.
Madziwa-Nussinov
,
Phys. Plasmas
13
,
032105
(
2006
).
13.
W. F.
Bergerson
,
C. B.
Forest
,
G.
Fiksel
,
D. A.
Hannum
,
R.
Kendrick
,
J. S.
Sarff
, and
S.
Stambler
,
Phys. Rev. Lett.
96
,
15004
(
2006
).
14.
C.
Paz-Soldan
,
M. I.
Brookhart
,
A. J.
Clinch
,
D. A.
Hannum
, and
C. B.
Forest
,
Phys. Plasmas
18
,
052114
(
2011
).
15.
A. L.
Moser
and
P. M.
Bellan
,
Nature
482
,
379
(
2012
).
16.
S. C.
Hsu
and
P. M.
Bellan
,
Phys. Plasmas
12
,
032103
(
2005
).
17.
I.
Furno
,
T.
Intrator
,
E.
Torbert
,
C.
Carey
,
M. D.
Cash
,
J. K.
Campbell
,
W. J.
Fienup
,
C. A.
Werley
,
G. A.
Wurden
, and
G.
Fiksel
,
Rev. Sci. Instrum.
74
,
2324
(
2003
).
18.
X.
Sun
,
T. P.
Intrator
,
L.
Dorf
,
I.
Furno
, and
G.
Lapenta
,
Phys. Rev. Lett.
100
,
205004
(
2008
).
19.
X.
Sun
,
T. P.
Intrator
,
M.
Liu
,
J.
Sears
, and
T.
Weber
,
Phys. Plasmas
20
,
112106
(
2013
).
20.
T.
DeHaas
,
W.
Gekelman
, and
B.
Van Compernolle
,
Phys. Plasmas
22
,
082118
(
2015
).
21.
T. P.
Intrator
,
I.
Furno
,
D. D.
Ryutov
,
G.
Lapenta
,
L.
Dorf
, and
X.
Sun
,
J. Geophys. Res.
112
,
n/a
, (
2007
).
22.
R. F.
Boivin
and
E. E.
Scime
,
Rev. Sci. Instrum.
74
,
4352
(
2003
).
23.
E. E.
Scime
,
J.
Carr
, Jr.
,
M.
Galante
,
R. M.
Magee
, and
R.
Hardin
,
Phys. Plasmas
20
,
032103
(
2013
).
24.
R. S.
Marshall
,
M. J.
Flynn
, and
P. M.
Bellan
,
Phys. Plasmas
25
,
112101
(
2018
).
25.
M.
Hesse
and
P. A.
Cassak
,
J. Geophys. Res.
125
,
e2018JA025935
, (
2020
).
26.
C. B.
Beatty
,
T. E.
Steinberger
,
E. M.
Aguirre
,
R. A.
Beatty
,
K. G.
Klein
,
J. W.
McLaughlin
,
L.
Neal
, and
E. E.
Scime
,
Phys. Plasmas
27
,
122101
(
2020
).
27.
X.
Zhang
,
E.
Aguirre
,
D. S.
Thompson
,
J.
McKee
,
M.
Henriquez
, and
E. E.
Scime
,
Phys. Plasmas
25
,
023503
(
2018
).
28.
D. S.
Thompson
,
R.
Khaziev
,
M.
Fortney-Henriquez
,
S.
Keniley
,
E. E.
Scime
, and
D.
Curreli
,
Phys. Plasmas
27
,
073511
(
2020
).
29.
A. M.
Keesee
,
E. E.
Scime
, and
R. F.
Boivin
,
Rev. Sci. Instrum.
75
,
4091
(
2004
).
30.
M. E.
Galante
,
R. M.
Magee
, and
E. E.
Scime
,
Phys. Plasmas
21
,
055704
(
2014
).
31.
D. S.
Thompson
,
T. E.
Steinberger
,
A. M.
Keesee
, and
E. E.
Scime
,
Plasma Sources Sci. Technol.
27
,
065007
(
2018
).
32.
P.
Shi
,
P.
Srivastav
,
C.
Beatty
,
R. S.
Nirwan
, and
E. E.
Scime
,
Incoherent Thomson Scattering System for PHAse Space MApping (PHASMA) experiment, Rev. Sci. Instrum.
(to be published).
33.
J. L.
Kline
,
E. E.
Scime
,
R. F.
Boivin
,
A. M.
Keesee
,
X.
Sun
, and
V. S.
Mikhailenko
,
Phys. Rev. Lett.
88
,
195002
(
2002
).
34.
I. A.
Biloiu
and
E. E.
Scime
,
Phys. Plasmas
17
,
113509
(
2010
).
35.
R. J.
Bickerton
,
Proc. Phys. Soc.
72
,
618
(
1958
).
36.
I.
Furno
,
T. P.
Intrator
,
G.
Lapenta
,
L.
Dorf
,
S.
Abbate
, and
D. D.
Ryutov
,
Phys. Plasmas
14
,
022103
(
2007
).
37.
P. M.
Bellan
,
J. Geophys. Res.
125
,
e2020JA028139
, (
2020
).
38.
I. A.
Biloiu
and
E. E.
Scime
,
Phys. Plasmas
17
,
113508
(
2010
).
39.
X.
Sun
,
A. M.
Keesee
,
C.
Biloiu
,
E. E.
Scime
,
A.
Meige
,
C.
Charles
, and
R. W.
Boswell
,
Phys. Rev. Lett.
95
,
25004
(
2005
).
40.
N. F.
Cramer
and
I. J.
Donnelly
,
Plasma Phys. Controlled Fusion
26
,
1285
(
1984
).
41.
V. M.
Nakariakov
,
V.
Pilipenko
,
B.
Heilig
,
P.
Jelínek
,
M.
Karlický
,
D. Y.
Klimushkin
,
D. Y.
Kolotkov
,
D.-H.
Lee
,
G.
Nisticò
,
T.
Van Doorsselaere
,
G.
Verth
, and
I. V.
Zimovets
,
Space Sci. Rev.
200
,
75
(
2016
).
42.
M.
Zuin
,
R.
Cavazzana
,
E.
Martines
,
G.
Serianni
,
V.
Antoni
,
M.
Bagatin
,
M.
Andrenucci
,
F.
Paganucci
, and
P.
Rossetti
,
Phys. Rev. Lett.
92
,
225003
(
2004
).
43.
E. D.
Fredrickson
and
P. M.
Bellan
,
Phys. Fluids
28
,
1866
(
1985
).
44.
C.
Biloiu
,
X.
Sun
,
E.
Choueiri
,
F.
Doss
,
E.
Scime
,
J.
Heard
,
R.
Spektor
, and
D.
Ventura
,
Plasma Sources Sci. Technol.
14
,
766
(
2005
).
45.
E.
Scime
,
C.
Biloiu
,
C.
Compton
,
F.
Doss
,
D.
Venture
,
J.
Heard
,
E.
Choueiri
, and
R.
Spektor
,
Rev. Sci. Instrum.
76
,
026107
(
2005
).
You do not currently have access to this content.