The fusion Z-pinch experiment (FuZE) is a sheared-flow stabilized Z-pinch designed to study the effects of flow stabilization on deuterium plasmas with densities and temperatures high enough to drive nuclear fusion reactions. Results from FuZE show high pinch currents and neutron emission durations thousands of times longer than instability growth times. While these results are consistent with thermonuclear neutron emission, energetically resolved neutron measurements are a stronger constraint on the origin of the fusion production. This stems from the strong anisotropy in energy created in beam-target fusion, compared to the relatively isotropic emission in thermonuclear fusion. In dense Z-pinch plasmas, a potential and undesirable cause of beam-target fusion reactions is the presence of fast-growing, “sausage” instabilities. This work introduces a new method for characterizing beam instabilities by recording individual neutron interactions in plastic scintillator detectors positioned at two different angles around the device chamber. Histograms of the pulse-integral spectra from the two locations are compared using detailed Monte Carlo simulations. These models infer the deuteron beam energy based on differences in the measured neutron spectra at the two angles, thereby discriminating beam-target from thermonuclear production. An analysis of neutron emission profiles from FuZE precludes the presence of deuteron beams with energies greater than 4.65 keV with a statistical uncertainty of 4.15 keV and a systematic uncertainty of 0.53 keV. This analysis demonstrates that axial, beam-target fusion reactions are not the dominant source of neutron emission from FuZE. These data are promising for scaling FuZE up to fusion reactor conditions.

1.
J. D.
Lawson
, “
Some criteria for a power producing thermonuclear reactor
,”
Proc. Phys. Soc. Sect. B
70
,
6
(
1957
).
2.
U.
Shumlak
,
B. A.
Nelson
,
E. L.
Claveau
,
E. G.
Forbes
,
R. P.
Golingo
,
M. C.
Hughes
,
R. J.
Oberto
,
M. P.
Ross
, and
T. R.
Weber
, “
Increasing plasma parameters using sheared flow stabilization of a Z-pinch
,”
Phys. Plasmas
24
,
055702
(
2017
).
3.
U.
Shumlak
, “
Z-pinch fusion
,”
J. Appl. Phys.
127
,
200901
(
2020
).
4.
W. H.
Bennett
, “
Magnetically self-focussing streams
,”
Phys. Rev.
45
,
890
(
1934
).
5.
M.
Haines
, “
A review of the dense z-pinch
,”
Plasma Phys. Controlled Fusion
53
,
093001
(
2011
).
6.
M. D.
Kruskal
and
M.
Schwarzschild
, “
Some instabilities of a completely ionized plasma
,”
Proc. R. Soc. London, Ser. A
223
,
348
360
(
1954
).
7.
I.
Kurchatov
, “
On the possibility of producing thermonuclear reactions in a gas discharge
,”
J. Nucl. Energy
4
,
193
202
(
1957
).
8.
R.
Carruthers
and
P.
Davenport
, “
Observations of the instability of constricted gaseous discharges
,”
Proc. Phys. Soc. Sect. B
70
,
49
(
1957
).
9.
U.
Shumlak
and
C. W.
Hartman
, “
Sheared flow stabilization of the m = 1 kink mode in Z pinches
,”
Phys. Rev. Lett.
75
,
3285
(
1995
).
10.
U.
Shumlak
,
R. P.
Golingo
,
B. A.
Nelson
, and
D. J.
Den Hartog
, “
Evidence of stabilization in the Z-pinch
,”
Phys. Rev. Lett.
87
,
205005
(
2001
).
11.
B. B.
Kadomtsev
, “
Hydromagnetic stability of a plasma
,”
Rev. Plasma Phys.
2
,
153
199
(
1966
).
12.
U.
Shumlak
,
C. S.
Adams
,
J. M.
Blakely
,
B.-J.
Chan
,
R. P.
Golingo
,
S. D.
Knecht
,
B. A.
Nelson
,
R. J.
Oberto
,
M. R.
Sybouts
, and
G. V.
Vogman
, “
Equilibrium, flow shear and stability measurements in the Z-pinch
,”
Nucl. Fusion
49
,
075039
(
2009
).
13.
Y.
Zhang
,
U.
Shumlak
,
B. A.
Nelson
,
R. P.
Golingo
,
T. R.
Weber
,
A. D.
Stepanov
,
E. L.
Claveau
,
E. G.
Forbes
,
Z. T.
Draper
,
J. M.
Mitrani
,
H. S.
McLean
,
K. K.
Tummel
,
D. P.
Higginson
, and
C. M.
Cooper
, “
Sustained neutron production from a sheared-flow stabilized Z pinch
,”
Phys. Rev. Lett.
122
,
135001
(
2019
).
14.
J. M.
Mitrani
,
D. P.
Higginson
,
Z. T.
Draper
,
J.
Morrell
,
L. A.
Bernstein
,
E. L.
Claveau
,
C. M.
Cooper
,
E. G.
Forbes
,
R. P.
Golingo
,
B. A.
Nelson
 et al., “
Measurements of temporally-and spatially-resolved neutron production in a sheared-flow stabilized Z-pinch
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
947
,
162764
(
2019
).
15.
M.
Krishnan
, “
The dense plasma focus: A versatile dense pinch for diverse applications
,”
IEEE Trans. Plasma Sci.
40
,
3189
3221
(
2012
).
16.
M. G.
Haines
, “
Ion beam formation in an m= 0 unstable z pinch
,”
Nucl. Instrum. Methods Phys. Res.
207
,
179
185
(
1983
).
17.
A.
Stepanov
,
U.
Shumlak
,
H.
McLean
,
B.
Nelson
,
E.
Claveau
,
E.
Forbes
,
T.
Weber
, and
Y.
Zhang
, “
Flow Z-pinch plasma production on the FuZE experiment
,”
Phys. Plasmas
27
,
112503
(
2020
).
18.
R. P.
Golingo
,
U.
Shumlak
, and
B. A.
Nelson
, “
Formation of a sheared flow Z pinch
,”
Phys. Plasmas
12
,
062505
(
2005
).
19.
H.
Klein
and
F. D.
Brooks
, “
Scintillation detectors for fast neutrons
,” in
Proceedings of International Workshop on Fast Neutron Detectors and Applications—PoS(FNDA2006)
(
2007
), Vol.
025
.
20.
S.
Agostinelli
,
J.
Allison
,
K.
Amako
,
J.
Apostolakis
,
H.
Araujo
,
P.
Arce
,
M.
Asai
,
D.
Axen
,
S.
Banerjee
,
G.
Barrand
 et al., “
Geant4-a simulation toolkit
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
506
,
250
303
(
2003
).
21.
T.
Laplace
,
B.
Goldblum
,
J. A.
Brown
,
D.
Bleuel
,
C.
Brand
,
G.
Gabella
,
T.
Jordan
,
C.
Moore
,
N.
Munshi
,
Z.
Sweger
 et al., “
Low energy light yield of fast plastic scintillators
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
954
,
161444
(
2020
).
22.
G.
Dietze
and
H.
Klein
, “
Gamma-calibration of ‘NE’ 213 scintillation counters
,”
Nucl. Instrum. Methods Phys. Res.
193
,
549
556
(
1982
).
23.
V. Y.
Glebov
,
C.
Forrest
,
J.
Knauer
,
A.
Pruyne
,
M.
Romanofsky
,
T.
Sangster
,
M.
Shoup
 III
,
C.
Stoeckl
,
J.
Caggiano
,
M.
Carman
 et al., “
Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA
,”
Rev. Sci. Instrum.
83
,
10D309
(
2012
).
24.
V. Y.
Glebov
,
C.
Stoeckl
,
T.
Sangster
,
S.
Roberts
,
G.
Schmid
,
R.
Lerche
, and
M.
Moran
, “
Prototypes of National Ignition Facility neutron time-of-flight detectors tested on OMEGA
,”
Rev. Sci. Instrum.
75
,
3559
3562
(
2004
).
25.
M. R.
Gomez
,
S. A.
Slutz
,
A. B.
Sefkow
,
D. B.
Sinars
,
K. D.
Hahn
,
S. B.
Hansen
,
E. C.
Harding
,
P. F.
Knapp
,
P. F.
Schmit
, and
C. A.
Jennings
, and
others.
Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion
,”
Phys. Rev. Lett.
113
,
155003
(
2014
).
26.
D.
Casey
,
J.
Frenje
,
M.
Gatu Johnson
,
F.
Séguin
,
C.
Li
,
R.
Petrasso
,
V. Y.
Glebov
,
J.
Katz
,
J.
Magoon
,
D.
Meyerhofer
 et al., “
The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF
,”
Rev. Sci. Instrum.
84
,
043506
(
2013
).
27.
T. J.
Langford
,
C. D.
Bass
,
E. J.
Beise
,
H.
Breuer
,
D. K.
Erwin
,
C. R.
Heimbach
, and
J. S.
Nico
, “
Fast neutron detection with a segmented spectrometer
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
771
,
78
87
(
2015
).
28.
J. B.
Czirr
and
G. L.
Jensen
, “
A compact neutron coincidence spectrometer, its measured response functions and potential applications
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
349
,
532
539
(
1994
).
29.
F.
Friesen
and
C.
Howell
, “
A functional form for liquid scintillator pulse shapes
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
955
,
163302
(
2020
).
30.
D. P.
Higginson
,
A.
Link
, and
A.
Schmidt
, “
A pairwise nuclear fusion algorithm for weighted particle-in-cell plasma simulations
,”
J. Comput. Phys.
388
,
439
453
(
2019
).
31.
R.
Brun
and
F.
Rademakers
, “
Root—An object oriented data analysis framework
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
389
,
81
86
(
1997
).
32.
F.
Porter
, “
Interval estimation using the likelihood function
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
368
,
793
803
(
1996
).
33.
S.
Jiang
,
D.
Higginson
,
A.
Link
,
I.
Holod
, and
A.
Schmidt
, “
Effect of polarity on beam and plasma target formation in a dense plasma focus
,”
Phys. Plasmas
26
,
042702
(
2019
).
34.
J.
Linhart
, “
Beam-target fusion in a dense z-pinch
,”
Plasma Phys. Controlled Fusion
30
,
1641
(
1988
).
35.
W.
Stygar
,
G.
Gerdin
,
F.
Venneri
, and
J.
Mandrekas
, “
Particle beams generated by a 6–12.5 kJ dense plasma focus
,”
Nucl. Fusion
22
,
1161
(
1982
).
36.
H.
Krompholz
,
L.
Michel
,
K.
Schoenbach
, and
H.
Fischer
, “
Neutron-, ion-, and electron-energy spectra in a 1 kJ plasma focus
,”
Appl. Phys.
13
,
29
35
(
1977
).
You do not currently have access to this content.