Molecular dynamical simulations are performed to investigate the evolution of unsupported shocks in a two-dimensional Yukawa solid. When a boundary of the solid moves uniformly inward, a compressional shock is generated with a propagating front. An unsupported shock forms if the moving boundary suddenly stops, and a rarefaction wave (RW) is generated near this boundary. The original shock front propagates more slowly than the head of the new RW; as a result, the shock front is eventually overtaken by the RW and a new front appears. It is found that the speed of this new front can be expressed as the average of the previous shock front speed and the longitudinal sound speed, the latter of which has a transition depending on the initial compressional speed of the moving boundary. It appears that this transition of the new shock front speed probably can be attributed to change of the compressibility properties.

1.
J. W.
Bond
,
K. M.
Watson
, and
J. A.
Welch
,
Atomic Theory of Gas Dynamics
(
Addison-Wesley
,
Reading, MA
,
1965
).
2.
I.
Sagert
,
W. P.
Even
, and
T. T.
Strother
,
Phys. Rev. E
95
,
053206
(
2017
).
3.
B. L.
Holian
,
T. C.
Germann
,
J. B.
Maillet
, and
C. T.
White
,
Phys. Rev. Lett.
89
,
285501
(
2002
).
4.
L. J.
Perkins
,
R.
Betti
,
K. N.
LaFortune
, and
W. H.
Williams
,
Phys. Rev. Lett.
103
,
045004
(
2009
).
5.
B. L.
Holian
and
G. K.
Straub
,
Phys. Rev. Lett.
43
,
1598
(
1979
).
6.
T. C.
Germann
,
B. L.
Holian
,
P. S.
Lomdahl
, and
R.
Ravelo
,
Phys. Rev. Lett.
84
,
5351
(
2000
).
7.
M. B.
Zellner
,
G.
Dimonte
,
T. C.
Germann
,
J. E.
Hammerberg
,
P. A.
Rigg
,
G. D.
Stevens
,
W. D.
Turley
, and
W. T.
Buttler
,
AIP Conf. Proc.
1195
,
1047
1050
(
2009
).
8.
G.
Ren
,
Y.
Chen
,
T.
Tang
, and
Q.
Li
,
J. Appl. Phys.
116
,
133507
(
2014
).
9.
W. B.
Liu
,
A. M.
He
, and
P.
Wang
,
AIP Adv.
8
,
095023
(
2018
).
10.
B.
Wu
,
F. C.
Wu
,
Y. B.
Zhu
,
P.
Wang
,
A. M.
He
, and
H. A.
Wu
,
AIP Adv.
8
,
045002
(
2018
).
11.
J. L.
Shao
,
P.
Wang
, and
A. M.
He
,
J. Appl. Phys.
116
,
073501
(
2014
).
12.
T.
de Rességuier
,
G.
Prudhomme
,
C.
Roland
,
E.
Brambrink
,
D.
Loison
,
B.
Jodar
,
E.
Lescoute
, and
A.
Sollier
,
J. Appl. Phys.
124
,
065106
(
2018
).
13.
J. N.
Wang
,
F. C.
Wua
,
Y. B.
Zhu
,
A. M.
He
,
P.
Wang
, and
H. A.
Wu
,
Comput. Mater. Sci.
156
,
404
(
2019
).
14.
Y.
Aglitskiy
,
M.
Karasik
,
A. L.
Velikovich
,
V.
Serlin
,
J.
Weaver
,
T. J.
Kessler
,
A. J.
Schmitt
,
S. P.
Obenschain
,
N.
Metzler
, and
J.
Oh
,
Phys. Rev. Lett.
109
,
085001
(
2012
).
15.
I. V.
Igumenshchev
,
A. L.
Velikovich
,
V. N.
Goncharov
,
R.
Betti
,
E. M.
Campbell
,
J. P.
Knauer
,
S. P.
Regan
,
A. J.
Schmitt
,
R. C.
Shah
, and
A.
Shvydky
,
Phys. Rev. Lett.
123
,
065001
(
2019
).
16.
B.
Bezzerides
,
D. W.
Forslund
, and
E. L.
Lindman
,
Phys. Fluids
21
,
2179
2185
(
1978
).
17.
A.
Yuen
and
J. J.
Barnard
,
Phys. Rev. E
92
,
033019
(
2015
).
18.
A.
Yuen
and
J. J.
Barnard
,
Phys. Rev. E
92
,
062307
(
2015
).
19.
A. R.
Niknam
,
M.
Hashemzadeh
,
B.
Shokri
, and
M. R.
Rouhani
,
Phys. Plasmas
16
,
122109
(
2009
).
20.
M. M.
Basko
,
Phys. Fluids
30
,
123306
(
2018
).
21.
N. M.
Bulgakova
,
Phys. Rev. E
60
,
R3498
(
1999
).
22.
M.
Lyutikov
,
Phys. Rev. E
82
,
056305
(
2010
).
23.
G. B.
Whitham
,
Linear and Nonlinear Waves
(
Wiley
,
New York
,
1974
).
24.
R.
Courant
and
K. O.
Friedrichs
,
Supersonic Flow and Shock Waves
(
Interscience
,
New York
,
1948
).
25.
Z.
Han
and
X.
Yin
,
Shock Dynamics
(
Science Press
,
Beijing
,
1992
), p.
14
.
26.
H. M.
Thomas
and
G. E.
Morfill
,
Nature
379
,
806
(
1996
).
27.
L. I. W. T.
Juan
,
C. H.
Chiang
, and
J. H.
Chu
,
Science
272
,
1626
(
1996
).
28.
A.
Melzer
,
A.
Homann
, and
A.
Piel
,
Phys. Rev. E
53
,
2757
(
1996
).
29.
R.
Merlino
and
J.
Goree
,
Phys. Today
57
(
7
),
32
(
2004
).
30.
V. E.
Fortov
,
A. V.
Ivlev
,
S. A.
Khrapak
,
A. G.
Khrapak
, and
G. E.
Morfill
,
Phys. Rep.
421
,
1
103
(
2005
).
31.
G. E.
Morfill
and
A. V.
Ivlev
,
Rev. Mod. Phys.
81
,
1353
(
2009
).
32.
M.
Bonitz
,
C.
Henning
, and
D.
Block
,
Rep. Prog. Phys.
73
,
066501
(
2010
).
33.
A.
Piel
,
Plasma Physics
(
Springer
,
Heidelberg
,
2010
).
34.
E.
Thomas
, Jr.
,
U.
Konopka
,
R. L.
Merlino
, and
M.
Rosenberg
,
Phys. Plasmas
23
,
055701
(
2016
).
35.
Y.
Feng
,
J.
Goree
, and
B.
Liu
,
Phys. Rev. Lett.
105
,
025002
(
2010
).
36.
K.
Qiao
,
J.
Kong
,
J.
Carmona-Reyes
,
L. S.
Matthews
, and
T. W.
Hyde
,
Phys. Rev. E
90
,
033109
(
2014
).
37.
U.
Konopka
,
G. E.
Morfill
, and
L.
Ratke
,
Phys. Rev. Lett.
84
,
891
(
2000
).
38.
Z.
Donkó
,
C. J.
Kalman
, and
P.
Hartmann
,
J. Phys.
20
,
413101
(
2008
).
39.
B.
Liu
,
J.
Goree
,
V.
Nosenko
, and
L.
Boufendi
,
Phys. Plasmas
10
,
9
(
2003
).
40.
A.
Melzer
,
A.
Schella
,
J.
Schablinski
,
D.
Block
, and
A.
Piel
,
Phys. Rev. E
87
,
033107
(
2013
).
41.
P.
Hartmann
,
M. C.
Sándor
,
A.
Kovács
, and
Z.
Donkó
,
Phys. Rev. E
84
,
016404
(
2011
).
42.
P.
Hartmann
,
Z.
Donkó
,
G. J.
Kalman
,
S.
Kyrkos
,
K. I.
Golden
, and
M.
Rosenberg
,
Phys. Rev. Lett.
103
,
245002
(
2009
).
43.
Y.
Lai
and
I.
Lin
,
Phys. Rev. Lett.
89
,
155002
(
2002
).
44.
T.
Ott
,
M.
Bonitz
,
Z.
Donkó
, and
P.
Hartmann
,
Phys. Rev. E
78
,
026409
(
2008
).
45.
Z.
Donkó
,
J.
Goree
, and
P.
Hartmann
,
Phys. Rev. E
81
,
056404
(
2010
).
46.
G. J.
Kalman
,
P.
Hartmann
,
Z.
Donkó
, and
M.
Rosenberg
,
Phys. Rev. Lett.
92
,
065001
(
2004
).
47.
T.
Ott
and
M.
Bonitz
,
Phys. Rev. Lett.
107
,
135003
(
2011
).
48.
M.
Marciante
and
M. S.
Murillo
,
Phys. Rev. Lett.
118
,
025001
(
2017
).
49.
W.
Lin
,
M. S.
Murillo
, and
Y.
Feng
,
Phys. Rev. E
100
,
043203
(
2019
).
50.
W.
Lin
,
M. S.
Murillo
, and
Y.
Feng
,
Phys. Rev. E
101
,
013203
(
2020
).
51.
A.
Kananovich
and
J.
Goree
,
Phys. Rev. E
101
,
043211
(
2020
).
52.
A.
Kananovich
and
J.
Goree
,
Phys. Plasmas
27
,
113704
(
2020
).
53.
See http://lammps.sandia.gov for the detailed information about the MD simulation software of LAMMPS.
54.
P.
Hartmann
,
G. J.
Kalman
,
Z.
Donkó
, and
K.
Kutasi
,
Phys. Rev. E
72
,
026409
(
2005
).
55.
N. M.
Bulgakova
,
I. M.
Bourakov
, and
N. A.
Bulgakova
,
Phys. Rev. E
63
,
046311
(
2001
).
56.
H.
Yasuda
,
C.
Chong
,
E. G.
Charalampidis
,
P. G.
Kevrekidis
, and
J.
Yang
,
Phys. Rev. E
93
,
043004
(
2016
).
57.
H.
Kim
,
E.
Kim
,
C.
Chong
,
P. G.
Kevrekidis
, and
J.
Yang
,
Phys. Rev. Lett.
120
,
194101
(
2018
).
58.
The general form of the family characteristic lines of RW23–25 is C+:dxdt=u+c, and each characteristic line of C+ should have a constant value for the summation u + c.
59.
W.
Li
,
W.
Lin
, and
Y.
Feng
,
Phys. Plasmas
24
,
043702
(
2017
).
60.
Y.
Xie
,
L. B.
Han
,
Q.
An
,
L. Q.
Zheng
, and
S. N.
Luo
,
J. Appl. Phys.
105
,
066103
(
2009
).
You do not currently have access to this content.