Tailoring the ion energy distribution function (IEDF) is vital for advanced plasma processing applications. Capacitively coupled plasma (CCP) discharges excited using a non-sinusoidal waveform have shown its capability to control IEDF through the generation of plasma asymmetry and DC self-bias. In this paper, we performed a particle-in-cell simulation study to investigate the IEDF in a symmetric capacitive discharge excited by a saw-tooth-like current waveform at a very high frequency. At a constant driving frequency of 27.12 MHz, the simulation results predict that the ion energy asymmetry in the discharge scales with the discharge current amplitude. A transition from a single narrow ion energy peak to a bi-modal type IEDF is observed with an increase in the current density amplitude. Further studies at a constant current density and varying the fundamental excitation frequency show that the ion energy asymmetry enhances with a reduction in the driving frequency. Increase in the plasma asymmetry and significant DC self-bias at a lower driving frequency is observed to be one of the principal factors responsible for the observed asymmetry in the ion energy peaks. An investigation of DC self-bias and plasma potential confirms that the powered electrode energy peak corresponds to the DC self-bias with respect to the plasma potential, and the grounded electrode peak corresponds to the plasma potential. These results suggest that although lower driving frequency is beneficial for generating the discharge asymmetry and large DC self-bias, a narrow low energy IEDF is plausible in very high frequency driven CCP systems.

1.
M.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley
,
New York
,
2005
).
2.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radio Frequency Plasmas
(
Cambridge University Press
,
Cambridge
,
2011
).
3.
T.
Panagopoulos
and
D. J.
Economou
,
J. Appl. Phys.
85
,
3435
(
1999
).
4.
E.
Kawamura
,
V.
Vahedi
,
M. A.
Lieberman
, and
C. K.
Birdsall
,
Plasma Sources Sci. Technol.
8
,
R45
R64
(
1999
).
5.
D. J.
Economou
,
J. Vac. Sci. Technol. A
31
,
050823
(
2013
).
6.
G.
Bugnon
,
A.
Feltrin
,
F.
Meillaud
,
J.
Bailat
, and
C.
Ballif
,
J. Appl. Phys.
105
,
064507
(
2009
).
7.
P. C.
Boyle
,
A. R.
Ellingboe
, and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
37
,
697
(
2004
).
8.
T.
Kitajima
,
Y.
Takeo
,
Z. L.
Petrovic
, and
T.
Makabe
,
Appl. Phys. Lett.
77
,
489
(
2000
).
9.
S. K.
Karkari
and
A. R.
Ellingboe
,
Appl. Phys. Lett.
88
,
101501
(
2006
).
10.
T.
Gans
,
J.
Schulze
,
D.
O'Connell
,
U.
Czarnetzki
,
R.
Faulkner
,
A. R.
Ellingboe
, and
M. M.
Turner
,
Appl. Phys. Lett.
89
,
261502
(
2006
).
11.
B. G.
Heil
,
J.
Schulze
,
T.
Mussenbrock
,
R. P.
Brinkmann
, and
U.
Czarnetzki
,
IEEE Trans. Plasma Sci.
36
,
1404
(
2008
).
12.
B. G.
Heil
,
U.
Czarnetzki
,
R. P.
Brinkmann
, and
T.
Mussenbrock
,
J. Phys. D: Appl. Phys.
41
,
165202
(
2008
).
13.
J.
Schulze
,
E.
Schüngel
, and
U.
Czarnetzki
,
J. Phys. D: Appl. Phys.
42
,
092005
(
2009
).
14.
Z.
Donkó
,
J.
Schulze
,
B. G.
Heil
, and
U.
Czarnetzki
,
J. Phys. D: Appl. Phys.
42
,
025205
(
2009
).
15.
D. J.
Coumou
,
D. H.
Clark
,
T.
Kummerer
,
M.
Hopkins
,
D.
Sullivan
, and
S.
Shannon
,
IEEE Trans. Plasma Sci.
42
,
1880
(
2014
).
16.
I.
Korolov
,
Z.
Donkó
,
U.
Czarnetzki
, and
J.
Schulze
,
J. Phys. D: Appl. Phys.
45
,
465205
(
2012
).
17.
J. W.
Coburn
and
E.
Kay
,
J. Appl. Phys.
43
,
4965
(
1972
).
18.
H.
Köhler
,
J. W.
Coburn
,
D. E.
Horne
,
E.
Kay
, and
H.
Keller
,
J. Appl. Phys.
57
,
59
(
1985
).
19.
M. A.
Lieberman
and
S. E.
Savas
,
J. Vac. Sci. Technol. A
8
,
1632
(
1990
).
20.
T.
Lafleur
,
P.
Chabert
, and
J. P.
Booth
,
J. Phys. D: Appl. Phys.
46
,
135201
(
2013
).
21.
S.
Sharma
,
A.
Sen
,
N.
Sirse
,
M. M.
Turner
, and
A. R.
Ellingboe
,
Phys. Plasmas
25
,
080705
(
2018
).
22.
T.
Lafleur
,
Plasma Sources Sci. Technol.
25
,
013001
(
2016
).
23.
T.
Lafleur
and
J. P.
Booth
,
J. Phys. D: Appl. Phys.
45
,
395203
(
2012
).
24.
P.
A Delattre
,
T.
Lafleur
,
E. V.
Johnson
, and
J. P.
Booth
,
J. Phys. D: Appl. Phys.
46
,
235201
(
2013
).
25.
T.
Lafleur
,
P. A.
Delattre
,
E. V.
Johnson
, and
J. P.
Booth
,
Appl. Phys. Lett.
101
,
124104
(
2012
).
26.
T.
Lafleur
,
P. A.
Delattre
,
E. V.
Johnson
, and
J. P.
Booth
,
Plasma Phys. Controlled Fusion
55
,
124002
(
2013
).
27.
B.
Bruneau
,
T.
Novikova
,
T.
Lafleur
,
J. P.
Booth
, and
E. V.
Johnson
,
Plasma Sources Sci. Technol.
24
,
015021
(
2015
).
28.
B.
Bruneau
,
T.
Novikova
,
T.
Lafleur
,
J. P.
Booth
, and
E. V.
Johnson
,
Plasma Sources Sci. Technol.
23
,
065010
(
2014
).
29.
S.
Sharma
,
N.
Sirse
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
29
,
114001
(
2020
).
30.
B.
Bruneau
,
T.
Novikova
,
T.
Lafleur
,
J. P.
Booth
, and
E. V.
Johnson
,
Phys. Rev. Lett.
114
,
125002
(
2015
).
31.
B.
Bruneau
,
T.
Lafleur
,
T.
Gans
,
D.
O'Connell
,
A.
Greb
,
I.
Korolov
,
A.
Derzsi
,
Z.
Donkó
,
S.
Brandt
,
E.
Schüngel
,
J.
Schulze
,
P.
Diomede
,
D. J.
Economou
,
S.
Longo
,
E.
Johnson
, and
J.-P.
Booth
,
Plasma Sources Sci. Technol.
25
,
01LT02
(
2016
).
32.
A. A.
Howling
,
J. L.
Dorier
,
C.
Hollenstein
,
U.
Kroll
, and
F.
Finger
,
J. Vac. Sci. Technol. A
10
,
1080
(
1992
).
33.
M.
Surendra
and
D. B.
Graves
,
Appl. Phys. Lett.
59
,
2091
(
1991
).
34.
M. A.
Lieberman
,
J. P.
Booth
,
P.
Chabert
,
J. M.
Rax
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
11
,
283
(
2002
).
35.
A.
Perret
,
P.
Chabert
,
J.
Jolly
, and
J.-P.
Booth
,
Appl. Phys. Lett.
86
(
1
),
021501
(
2005
).
36.
C.
Harvey
,
N.
Sirse
,
C.
Gaman
, and
A. R.
Ellingboe
,
Phys. Plasmas
27
,
110701
(
2020
).
37.
N.
Sirse
,
C.
Harvey
,
C.
Gaman
, and
A. R.
Ellingboe
,
J. Phys. D: Appl. Phys.
53
,
335203
(
2020
).
38.
A. R.
Ellingboe
, “
Plasma source
,” U.S. patent 7,342,361 B2 (
2008
).
39.
E.
Monaghan
,
T.
Michna
,
C.
Gaman
,
D.
O'Farrel
,
K.
Ryan
,
D.
Adley
,
T. S.
Perova
,
B.
Drews
,
M.
Jaskot
, and
A. R.
Ellingboe
,
Thin Solid Films
519
(
20
),
6884
(
2011
).
40.
K. S.
Kim
,
N.
Sirse
,
K. H.
Kim
,
A. R.
Ellingboe
,
K. N.
Kim
, and
G. Y.
Yeom
,
J. Phys. D: Appl. Phys.
49
(
39
),
395201
(
2016
).
41.
H.
Schmidt
,
L.
Sansonnens
,
A. A.
Howling
,
C.
Hollenstein
,
M.
Elyaakoubi
, and
J. P. M.
Schmitt
,
J. Phys. D: Appl. Phys.
95
,
4559
(
2004
).
42.
L.
Sansonnens
and
J.
Schmitt
,
Appl. Phys. Lett.
82
(
2
),
182
(
2003
).
43.
P.
Chabert
,
J.-L.
Raimbault
,
J.-M.
Rax
, and
A.
Perret
,
Phys. Plasmas
11
,
4081
(
2004
).
44.
E.
Schüngel
,
S.
Mohr
,
J.
Schulze
, and
U.
Czarnetzki
,
Appl. Phys. Lett.
106
,
054108
(
2015
).
45.
B.
Berger
,
K.
You
,
H.-C.
Lee
,
T.
Mussenbrock
,
P.
Awakowicz
, and
J.
Schulze
,
Plasma Sources Sci. Technol.
27
,
12LT02
(
2018
).
46.
S.
Wilczek
,
J.
Trieschmann
,
D.
Eremin
,
R. P.
Brinkmann
,
J.
Schulze
,
E.
Schuengel
,
A.
Derzsi
,
I.
Korolov
,
P.
Hartmann
,
Z.
Donkó
, and
T.
Mussenbrock
,
Phys. Plasmas
23
,
063514
(
2016
).
47.
S.
Wilczek
,
J.
Schulze
,
R. P.
Brinkmann
,
Z.
Donkó
,
J.
Trieschmann
, and
T.
Mussenbrock
,
J. Appl. Phys.
127
,
181101
(
2020
).
48.
E.
Schüngel
,
Z.
Donkó
,
P.
Hartmann
,
A.
Derzsi
,
I.
Korolov
, and
J.
Schulze
,
Plasma Sources Sci. Technol.
24
,
045013
(
2015
).
49.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation using Particles
(
Adam Hilger
,
Bristol
,
1988
).
50.
C. K.
Birdsall
,
Plasma Physics via Computer Simulation
(
Adam Hilger
,
Bristol
,
1991
).
51.
M. M.
Turner
,
A. W.
Hutchinson
,
R. A.
Doyle
, and
M. B.
Hopkins
,
Phys. Rev. Lett.
76
,
2069
(
1996
).
52.
P. C.
Boyle
,
A. R.
Ellingboe
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
13
,
493
(
2004
).
53.
L.
Lauro-Taroni
,
M. M.
Turner
, and
N. St. J.
Braithwaite
,
J. Phys. D: Appl. Phys.
37
,
2216
(
2004
).
54.
M. M.
Turner
,
Plasma Sources Sci. Technol.
22
,
055001
(
2013
).
55.
J.
Conway
,
S.
Kechkar
,
N. O.
Connor
,
C.
Gaman
,
M. M.
Turner
, and
S.
Daniels
,
Plasma Sources Sci. Technol.
22
,
045004
(
2013
).
56.
S.
Sharma
,
N.
Sirse
,
P. K.
Kaw
,
M. M.
Turner
, and
A. R.
Ellingboe
,
Phys. Plasmas
23
,
110701
(
2016
).
57.
S.
Sarveshwar
,
N.
Sirse
,
P. K.
Kaw
,
M. M.
Turner
, and
A. R.
Ellingboe
, in
APS Gaseous Electronics Conference 2016
(APS, 2016).
58.
S.
Sharma
,
N.
Sirse
,
M. M.
Turner
, and
A. R.
Ellingboe
,
Phys. Plasmas
25
,
063501
(
2018
).
59.
S.
Sharma
,
N.
Sirse
,
A.
Sen
,
J. S.
Wu
, and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
52
,
365201
(
2019
).
60.
S.
Sharma
,
N.
Sirse
,
A.
Sen
,
M. M.
Turner
, and
A. R.
Ellingboe
,
Phys. Plasmas
26
,
103508
(
2019
).
61.
S.
Sharma
,
N.
Sirse
,
A.
Kuley
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
29
,
045003
(
2020
).
62.
S.
Sharma
,
N.
Sirse
,
A.
Kuley
,
A.
Sen
, and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
54
,
055205
(
2020
).
63.
S.
Sharma
,
S. K.
Mishra
,
P. K.
Kaw
, and
M. M.
Turner
,
Phys. Plasmas
24
,
013509
(
2017
).
64.
J.
Wang
,
S.
Dine
,
J.-P.
Booth
, and
E. V.
Johnson
,
J. Vac. Sci. Technol. A
37
,
021303
(
2019
).
65.
M. M.
Turner
and
P.
Chabert
,
Appl. Phys. Lett.
104
,
164102
(
2014
).
66.
M. M.
Turner
and
P.
Chabert
,
J. Phys. D: Appl. Phys.
50
,
23LT02
(
2017
).
67.
V. A.
Godyak
,
Soviet Radio Frequency Discharge Research
(
Delphic
,
Falls Church, VA
,
1986
).
68.
W. D.
Qiu
,
K. J.
Bowers
, and
C. K.
Birdsall
,
Plasma Sources Sci. Technol.
12
,
57
(
2003
).
69.
R.
Shahid
and
M. J.
Kushner
,
J. Appl. Phys.
82
,
2805
(
1997
).
70.
B.
Horv´ath
,
M.
Daksha
,
I.
Korolov
,
A.
Derzsi
, and
J.
Schulze
,
Plasma Sources Sci. Technol.
26
,
124001
(
2017
).
71.
B.
Horv´ath
,
J.
Schulze
,
Z.
Donk´o
, and
A.
Derzsi
,
J. Phys. D: Appl. Phys.
51
,
355204
(
2018
).
72.
73.
S.
Sharma
and
M. M.
Turner
,
Plasma Sources Sci. Technol.
22
,
035014
(
2013
).
74.
S.
Sharma
, “
Investigation of ion and electron kinetic phenomena in capacitively coupled radio-frequency plasma sheaths: A simulation study
,” Ph.D. thesis (
Dublin City University
,
Ireland
,
2013
).
75.
S.
Sharma
and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
46
,
285203
(
2013
).
76.
J.
Schulze
,
Z.
Donkó
,
T.
Lafleur
,
S.
Wilczek
, and
R. P.
Brinkmann
,
Plasma Sources Sci. Technol.
27
,
055010
(
2018
).
77.
M.
Vass
,
S.
Wilczek
,
T.
Lafleur
,
R. P.
Brinkmann
,
Z.
Donkó
, and
J.
Schulze
,
Plasma Sources Sci. Technol.
29
,
085014
(
2020
).
You do not currently have access to this content.