Reentry plasma sheath diagnostic plays extremely important roles in the research of the blackout problem. In this paper, a broadband microwave reflectometer based on the invariant point of reflection data has been designed and developed for the reentry plasma sheath diagnostic. The invariant point Y(ωp, 1) is derivable from the broadband reflection data. The electron density and collision frequency are measured simultaneously. The diagnostic algorithm was verified by the simulation analysis and diagnostic experiment. The algorithm has low computational complexity and relatively high precision. This algorithm offers a certain reference value for the plasma sheath diagnostic of reentry vehicles or hypersonic vehicles in the future. Especially, the design of broadband VVD antenna with heat-resistant wave-transparent composites has certain practical values.

1.
R.
Hartunian
,
G.
Stewart
,
T.
Curtiss
,
S.
Fergason
,
R.
Seibold
, and
P.
Shome
, “
Implications and mitigation of radio frequency blackout during reentry of reusable launch vehicles
,” in
AIAA Atmospheric Flight Mechanics Conference and Exhibit
(AIAA,
2007
), p.
6633
.
2.
J. P.
Rybak
and
R.
Churchill
, “
Progress in reentry communications
,”
IEEE Trans. Aerosp. Electron. Syst.
AES-7
,
879
894
(
1971
).
3.
X.
Kai
,
Y.
Min
,
B.
Bai
,
X.
Li
,
Z.
Hui
, and
L.
Guo
, “
Re-entry communication through a plasma sheath using standing wave detection and adaptive data rate control
,”
J. Appl. Phys.
119
,
023301
(
2016
).
4.
W.
Linwood-Jones
and
A.
Cross
, “
Electrostatic probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second
,”
NASA Technical Report No. D-6617
(
NASA
,
1972
).
5.
J. L.
Poirier
,
W.
Rotman
,
D. T.
Hayes
, and
J. F.
Lennon
, “
Effects of the reentry plasma sheath on microwave antenna performance: Trailblaser 2 rocket results of 18 June 1967
,”
Technical Report No. 394
(
Air Force Cambridge Research Labs
,
Hanscom AFB, Massachusetts
,
1969
).
6.
W.
Grantham
, “
Flight results of a 25000 foot per second reentry experiment using microwave reflectometers to measure plasma density and standoff distance
,” Technical Report No.
TR-Nasatn-D-6062
(
Langley Research Center
,
1970
).
7.
Y.
Xie
,
C.
Hu
,
S.
Liu
,
J.
Li
, and
C.
Jiang
, “
Measurement of plasma parameters of an ion source for EAST-NBI using water-cooled Langmuir probe
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
676
,
18
20
(
2012
).
8.
M. T.
Fang
,
J. L.
Zhang
, and
J. D.
Yan
, “
On the use of Langmuir probes for the diagnosis of atmospheric thermal plasmas
,”
IEEE Trans. Plasma Sci.
33
,
1431
1442
(
2005
).
9.
S.
Nan
,
G.
Xiang
,
J.
Yinxian
,
Z.
Shoubiao
,
Z.
Long
,
W.
Erhui
,
Y.
Yao
, and
L.
Zixi
, “
Far-infrared laser diagnostics in EAST
,”
Plasma Sci. Technol.
13
,
347
(
2011
).
10.
Y. G.
Li
,
Y.
Zhou
,
Y.
Li
,
Z. C.
Deng
,
H. X.
Wang
, and
J.
Yi
, “
A new high sensitivity far-infrared laser interferometer for the HL-2A tokamak
,”
Rev. Sci. Instrum.
88
,
083508
(
2017
).
11.
M. N.
Shneider
and
R. B.
Miles
, “
Microwave diagnostics of small plasma objects
,”
J. Appl. Phys.
98
,
033301
(
2005
).
12.
L.
Lei
,
B.
Tobias
,
C. W.
Domier
,
N. C.
Luhmann
, and
H. K.
Park
, “
A synthetic diagnostic for the evaluation of new microwave imaging reflectometry diagnostics for DIII-D and KSTAR
,”
Rev. Sci. Instrum.
81
,
10D904
(
2010
).
13.
S.
Zhang
,
X.
Gao
,
B.
Ling
,
Y.
Wang
,
T.
Zhang
,
X.
Han
,
Z.
Liu
,
J.
Bu
,
J.
Li
 et al., “
Density profile and fluctuation measurements by microwave reflectometry on EAST
,”
Plasma Sci. Technol.
16
,
311
315
(
2014
).
14.
Y.
Li
and
Z.
Hou
, “
Diagnostics of plasma electron density and collision frequency of fluorescent lamp using microwave transmission diagnostics
,” in
The Second International Conference on Physics, Mathematics, and Statistics, Hangzhou, China 22–24 May, 2019
(IOP Publishing, 2019), Vol. 1324, 012073.
15.
A.
Khomenko
and
S.
Macheret
, “
Diagnostics of small plasma discharges using probing in wide range of microwave frequencies
,”
Appl. Phys. Lett.
116
,
023501
(
2020
).
16.
S.
Ming
,
T.
Zhan
,
Z.
Zhipeng
,
W.
Dong
, and
P.
Wenjun
, “
Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode
,”
Plasma Sci. Technol.
20
,
054005
(
2018
).
17.
H.
Zheng
,
J.
Wu
,
Q.
Cao
,
J.
Zhang
, and
X.
Huang
, “
Diagnosis of electron density and temperature by using collisional radiative model in capacitively coupled Ar plasmas I: Triple-frequency discharges
,” preprint arXiv:2010.10714 (
2020
).
18.
R.
Cui
,
R.
Han
,
K.
Yang
,
W.
Zhu
,
Y.
Wang
,
Z.
Zhang
, and
J.
Ouyang
, “
Diagnosis of helicon plasma by local OES
,”
Plasma Sources Sci. Technol.
29
,
015018
(
2020
).
19.
J.
Zhang
,
H.
Liu
,
Y.
Jie
,
X.
Wei
, and
L.
Hu
, “
The conceptual design of high temporal resolution HCN interferometry for atmospheric pressure air plasmas
,”
J. Instrum.
13
,
T01004
(
2018
).
20.
W.
Destler
,
J.
DeGrange
,
H.
Fleischmann
,
J.
Rodgers
, and
Z.
Segalov
, “
Experimental studies of high-power microwave reflection, transmission, and absorption from a plasma-covered plane conducting boundary
,”
J. Appl. Phys.
69
,
6313
6318
(
1991
).
21.
E.
Anabitarte
,
E.
Bustamante
,
M.
Calderón
, and
J.
Senties
, “
Characterization of a q-band microwave reflectometer for plasma diagnosis in the tokamak TJ-1
,”
Int. J. Infrared Millimeter Waves
8
,
733
751
(
1987
).
22.
M. A.
Heald
and
C.
Wharton
,
Plasma Diagnostics with Microwaves
(
RE Krieger Publishing Company
,
1978
).
23.
Z.
Yuan
and
J.
Shi
, “
Electron collision frequency of the non-magnetized plasma
,”
Nucl. Fusion Plasma Phys.
24
,
157
160
(
2004
).
24.
C.
Laviron
,
P.
Millot
, and
R.
Prentice
, “
First experiments of pulse compression radar reflectometry for density measurements on jet plasmas
,”
Plasma Phys. Controlled Fusion
37
,
975
(
1995
).
25.
M.
Laroussi
and
J. R.
Roth
, “
Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab
,”
IEEE Trans. Plasma Sci.
21
,
366
372
(
1993
).
26.
J.
Wang
,
Y.
Liu
,
X.
Liu
,
X.
Li
,
H.
Zhang
, and
D.
Wang
, “
Robust model-predictive control for inductively coupled plasma generation with a semiphysical simulation
,”
IEEE Trans. Ind. Electron.
68
,
3380
3389
(
2020
).
27.
C.
Zhao
,
X.
Li
,
M.
Yang
, and
C.
Sun
, “
Resistance-loaded miniaturized dual-layer vivaldi antenna for plasma reflection diagnosis
,”
Microwave Opt. Technol. Lett.
63
,
205
210
(
2021
).
28.
X.
Li
,
C.
Zhao
,
Y.
Liu
,
J.
Zhang
,
D.
Liu
,
C.
Sun
, and
W.
Bao
, “
Research on the method of dual-frequency microwave diagnosis of plasma for solving phase integer ambiguity
,”
Plasma Sci. Technol.
23
,
095501
(
2021
).
You do not currently have access to this content.