Cold atmospheric-pressure plasma jet generates rich reactive species including reactive oxygen species and reactive nitrogen species with gas temperature close to or at room temperature, which is very attractive for applications such as plasma medicine. However, under one atmospheric pressure, due to the high electron–neutral particles collision frequency (1011–12/s), it is difficult to generate atmospheric pressure plasma while keeping the gas temperature close to or at room temperature. Furthermore, when air rather than noble gases is used as working gas, due to the low energy levels of rotational and vibrational states of nitrogen and oxygen, it becomes extremely challenging to generate cold atmospheric pressure air plasma jet (CAAP-J) with gas temperature close to or at room temperature. Fortunately, after decades of research, several CAAP-Js have been reported. In this review, the state-of-the-art of the development of CAAP-Js is presented. The CAAP-Js are grouped into six categories based on their electrode configuration. A brief discussion on each group of the CAAP-Js is presented. Moreover, the physics of CAAP-Js is discussed, including the dynamics, the striation phenomenon, the temporal behavior of plasma parameters, and the nonequilibrium characteristic of CAAP-Js. Furthermore, the measurements of the reactive species generated by CAAP-Js are briefly reviewed. Finally, discussions and perspective of future research on CAAP-Js are presented.

1.
X.
Lu
,
G.
Naidis
,
M.
Laroussi
, and
K.
Ostrikov
,
Phys. Rep.
540
,
123
166
(
2014
).
2.
X.
Lu
and
K.
Ostrikov
,
Appl. Phys. Rev.
5
,
031102
(
2018
).
3.
A.
Shashurin
,
M. N.
Shneider
,
A.
Dogariu
,
R. B.
Miles
, and
M.
Keidar
,
Appl. Phys. Lett.
94
,
231504
(
2009
).
4.
G.
Naidis
,
Appl. Phys. Lett.
98
,
141501
(
2011
).
5.
S.
Reuter
,
K.
Niemi
,
V.
Schulz-von der Gathen
, and
H. F.
Dobele
,
Plasma Sources Sci. Technol.
18
,
015006
(
2009
).
6.
G.
Cho
,
H.
Lim
,
J. H.
Kim
,
D. J.
Jin
,
G. C.
Kwon
,
E. H.
Choi
, and
H. S.
Uhm
,
IEEE Trans. Plasma Sci.
39
,
1234
(
2011
).
7.
M.
Laroussi
and
T.
Akan
,
Plasma Processes Polym.
4
,
777
(
2007
).
8.
T.
Shao
,
K.
Long
,
C.
Zhang
,
P.
Yan
,
S.
Zhang
, and
R.
Pan
,
J. Phys. D
41
,
215203
(
2008
).
9.
C.
Zhang
,
B.
Huang
,
Z.
Luo
,
X.
Che
,
P.
Yan
, and
T.
Shao
,
Plasma Sources Sci. Technol.
28
,
064001
(
2019
).
10.
X.
Liu
,
X.
Pei
,
X.
Lu
, and
D.
Liu
,
Plasma Sources Sci. Technol.
23
,
035007
(
2014
).
11.
X.
Pei
,
D.
Gidon
,
Y.
Yang
,
Z.
Xiong
, and
D.
Graves
,
Chem. Eng. J.
362
,
217
228
(
2019
).
12.
G.
Naidis
,
E.
Sosnin
,
V.
Panarin
,
V.
Skakun
, and
V.
Tarasenko
,
IEEE Trans. Plasma Sci.
44
,
3249
(
2016
).
13.
K.
Ostrikov
,
U.
Cvelbar
, and
A.
Murphy
,
J. Phys. D
44
,
174001
(
2011
).
14.
15.
H.
Ayan
,
G.
Fridman
,
A.
Gutsol
,
V.
Vasilets
,
A.
Fridman
, and
G.
Friedman
,
IEEE Trans. Plasma Sci.
36
,
504
(
2008
).
16.
X.
Lu
,
M.
Keidar
,
M.
Laroussi
,
E.
Choi
,
E.
Szili
, and
K.
Ostrikov
,
Mater. Sci. Eng.: R
138
,
36
(
2019
).
17.
H.
Cheng
,
J.
Xu
,
X.
Li
,
D.
Liu
, and
X.
Lu
,
Phys. Plasmas
27
,
063514
(
2020
).
18.
X.
Lu
,
G.
Naidis
,
M.
Laroussi
,
S.
Reuter
,
D.
Graves
, and
K.
Ostrikov
,
Phys. Rep.
630
,
1
84
(
2016
).
19.
M.
Laroussi
,
IEEE Trans Plasma Sci.
37
,
714
(
2009
).
20.
M.
Kong
,
G.
Kroesen
,
G.
Morfill
,
T.
Nosenko
,
T.
Shimizu
,
J.
Dijk
, and
J.
Zimmermann
,
New J. Phys.
11
,
115012
(
2009
).
21.
G.
Fridman
,
M.
Peddinghaus
,
H.
Ayan
,
A.
Fridman
,
M.
Balasubramanian
,
A.
Gutsol
,
A.
Brooks
, and
G.
Friedman
,
Plasma Chem. Plasma Process.
26
,
425
(
2006
).
22.
A.
Shashurin
,
M.
Keidar
,
S.
Bronnikov
,
R. A.
Jurjus
, and
M. A.
Stepp
,
Appl. Phys. Lett.
93
,
181501
(
2008
).
23.
D.
Mariotti
,
Appl. Phys. Lett.
92
,
151505
(
2008
).
24.
D.
O'Connell
,
L.
Cox
,
W.
Hyland
,
S.
McMahon
,
S.
Reuter
,
W.
Graham
,
T.
Gans
, and
F.
Currell
,
Appl. Phys. Lett.
98
,
043701
(
2011
).
25.
X.
He
,
J.
Lin
,
B.
He
,
L.
Xu
,
J.
Li
,
Q.
Chen
,
G.
Yue
,
Q.
Xiong
, and
Q.
Liu
,
Plasma Sources Sci. Technol.
27
,
085010
(
2018
).
26.
H.
Cheng
,
X.
Liu
,
X.
Lu
, and
D.
Liu
,
High Voltage
1
,
62
(
2016
).
27.
T.
von Woedtke
,
S.
Reuter
,
K.
Masur
, and
K.
Weltmann
,
Phys. Rep.
530
,
291
(
2013
).
28.
J.
Kolb
,
A.
Mohamed
,
R.
Price
,
R.
Swanson
,
A.
Bowman
,
R.
Chiavarini
,
M.
Stacey
, and
K.
Schoenbach
,
Appl. Phys. Lett.
92
,
241501
(
2008
).
29.
X.
Pei
,
J.
Kredl
,
X.
Lu
, and
J.
Kolb
,
J. Phys. D
51
,
384001
(
2018
).
30.
X.
Hao
,
A.
Mattson
,
C.
Edelblute
,
M.
Malik
,
L.
Heller
, and
J.
Kolb
,
Plasma Processes Polym.
11
,
1044
(
2014
).
31.
S.
Yu
,
Q.
Chen
,
J.
Liu
,
K.
Wang
,
Z.
Jiang
,
Z.
Sun
,
J.
Zhang
, and
J.
Fang
,
Appl. Phys. Lett.
106
,
244101
(
2015
).
32.
M.
Xaubet
,
J.
Baudler
,
T.
Gerling
,
L.
Giuliani
,
F.
Minotti
,
D.
Grondona
,
T.
Woedtke
, and
K.
Weltmann
,
Plasma Processes Polym.
15
,
1700211
(
2018
).
33.
Y.
Hong
,
W.
Kang
,
Y.
Hong
,
W.
Yi
, and
H.
Uhm
,
Phys. Plasmas
16
,
123502
(
2009
).
34.
J.
Walsh
and
M.
Kong
,
Appl. Phys. Lett.
99
,
081501
(
2011
).
35.
K.
Liu
,
H.
Hu
,
J.
Lei
,
Y.
Hu
, and
Z.
Zheng
,
Phys. Plasmas
23
,
123510
(
2016
).
36.
X.
Deng
,
A.
Nikiforov
,
P.
Vanraes
, and
C.
Leys
,
J. Appl. Phys.
113
,
023305
(
2013
).
37.
S.
Kang
,
H.
Kim
,
G.
Yun
, and
J.
Lee
,
Plasma Sources Sci. Technol.
24
,
035020
(
2015
).
38.
I.
Won
,
S.
Kang
,
J.
Sim
, and
J.
Lee
,
IEEE Trans. Plasma Sci.
42
,
2788
(
2014
).
39.
Y.
Akishev
,
G.
Aponin
,
A.
Petryakov
, and
N.
Trushkin
,
J. Phys. D
51
,
274006
(
2018
).
40.
R.
Kawakami
,
Y.
Yoshitani
,
K.
Mitani
,
M.
Niibe
,
Y.
Nakano
,
C.
Azuma
, and
T.
Mukai
,
Appl. Surf. Sci.
509
,
144910
(
2020
).
41.
Y.
Hong
,
J.
Pan
,
N.
Lu
,
K.
Shang
,
J.
Li
, and
Y.
Wu
,
Thin Solid Films
548
,
470
(
2013
).
42.
A.
Meiners
,
M.
Leck
, and
B.
Abel
,
Plasma Sci. Technol.
17
,
14
(
2015
).
43.
X.
Li
,
W.
Bao
,
P.
Jia
, and
C.
Di
,
J. Appl. Phys.
116
,
023302
(
2014
).
44.
X.
Li
,
W.
Bao
,
J.
Chu
,
P.
Zhang1
, and
P.
Jia
,
Plasma Sources Sci. Technol.
24
,
065020
(
2015
).
45.
Z.
Li
,
J.
Liu
, and
X.
Lu
,
Plasma Sources Sci. Technol.
29
,
045015
(
2020
).
46.
X.
Lu
,
Z.
Xiong
,
F.
Zhao
,
Y.
Xian
,
Q.
Xiong
,
W.
Gong
,
C.
Zou
,
Z.
Jiang
, and
Y.
Pan
,
Appl. Phys. Lett.
95
,
181501
(
2009
).
47.
S.
Wu
,
X.
Lu
,
Z.
Xiong
, and
Y.
Pan
,
IEEE Trans Plasma Sci.
38
,
3404
(
2010
).
48.
X.
Pei
,
X.
Lu
,
J.
Liu
,
D.
Liu
,
Y.
Yang
,
K.
Ostrikov
,
P.
Chu
, and
Y.
Pan
,
J. Phys. D
45
,
165205
(
2012
).
49.
M.
Teschke
,
J.
Kedzierski
,
E. G.
Finantu-Dinu
,
D.
Korzec
, and
J.
Engemann
,
IEEE Trans. Plasma Sci.
33
,
310
(
2005
).
50.
X.
Lu
and
M.
Laroussi
,
J. Appl. Phys.
100
,
063302
(
2006
).
51.
G.
Naidis
,
Plasma Sources Sci. Technol.
23
,
065014
(
2014
).
52.
S.
Wu
,
X.
Lu
, and
Y.
Pan
,
Phys. Plasmas
21
,
073509
(
2014
).
53.
J.
Boeuf
,
L.
Yang
, and
L.
Pitchford
,
J. Phys. D
46
,
015201
(
2013
).
54.
C.
Jiang
,
J.
Miles
,
J.
Hornef
,
C.
Carter
, and
S.
Adams
,
Plasma Sources Sci. Technol.
28
,
085009
(
2019
).
55.
L.
Nie
,
Y.
Xian
,
X.
Lu
, and
K.
Ostrikov
,
Phys. Plasmas
24
,
043502
(
2017
).
56.
S.
Wu
,
H.
Xu
,
Y.
Xian
,
Y.
Lu
, and
X.
Lu
,
AIP Adv.
5
,
027110
(
2015
).
57.
Z.
Xiong
and
M.
Kushner
,
Plasma Sources Sci. Technol.
21
,
034001
(
2021
).
58.
S.
Wu
and
X.
Lu
,
Phys. Plasmas
21
,
123509
(
2014
).
59.
Y.
Xian
,
X.
Lu
,
J.
Liu
,
S.
Wu
,
D.
Liu
, and
Y.
Pan
,
Plasma Sources Sci. Technol.
21
,
034013
(
2012
).
60.
Y.
Xian
,
D.
Zou
,
X.
Lu
,
Y.
Pan
, and
K.
Ostrikov
,
Appl. Phys. Lett.
103
,
094103
(
2013
).
61.
S.
Wu
,
Z.
Wang
,
Q.
Huang
,
X.
Tan
,
X.
Lu
, and
K.
Ostrikov
,
Phys. Plasmas
20
,
023503
(
2013
).
62.
Y.
Xian
,
P.
Zhang
,
X.
Lu
,
X.
Pei
,
S.
Wu
,
Q.
Xiong
, and
K.
Ostrikov
,
Sci. Rep.
3
,
01599
(
2013
).
63.
D.
Zou
,
X.
Cao
,
X.
Lu
, and
K.
Ostrikov
,
Phys. Plasmas
22
,
103517
(
2015
).
64.
Y.
Xian
,
X.
Lu
,
S.
Wu
,
P.
Chu
, and
Y.
Pan
,
Appl. Phys. Lett.
100
,
123702
(
2012
).
65.
Y.
Xian
,
S.
Wu
,
Z.
Wang
,
Q.
Huang
,
X.
Lu
, and
J.
Kolb
,
Plasma Processes Polym.
10
,
372
(
2013
).
66.
D.
Lacoste
,
A.
Bourdon
,
K.
Kuribara
,
K.
Urabe
,
S.
Stauss
, and
K.
Terashima
,
Plasma Sources Sci. Technol.
23
,
062006
(
2014
).
67.
J.
Jansky
,
P.
Le Delliou
,
F.
Tholin
,
P.
Tardiveau
,
A.
Bourdon
, and
S.
Pasquiers
,
J. Phys. D
44
,
335201
(
2011
).
68.
J.
Jarrige
,
M.
Laroussi
, and
E.
Karakas
,
Plasma Sources Sci. Technol.
19
,
065005
(
2010
).
69.
H.
Cheng
,
X.
Liu
,
X.
Lu
, and
D.
Liu
,
High Volt.
1
,
62
73
(
2016
).
70.
S.
Wu
and
X.
Lu
,
Phys. Plasmas
21
,
023501
(
2014
).
71.
Y.
Zhang
,
H.
Cheng
,
H.
Gao
,
D.
Liu
, and
X.
Lu
,
High Volt.
6
,
408–425
(
2021
).
72.
Q.
Xiong
,
X.
Lu
,
K.
Ostrikov
,
Z.
Xiong
,
Y.
Xian
,
C.
Zou
, and
Y.
Pan
,
Phys. Plasmas
17
,
043506
(
2010
).
73.
Q.
Xiong
,
X.
Lu
,
K.
Ostrikov
,
Z.
Xiong
,
Y.
Xian
,
F.
Zou
,
C.
Zou
,
J.
Hu
,
W.
Gong
, and
Z.
Jiang
,
Phys. Plasmas
16
,
043505
(
2009
).
74.
F.
Tholin
and
A.
Bourdon
,
Plasma Sources Sci. Technol.
22
,
045014
(
2013
).
76.
G.
Naidis
,
Plasma Processes Polym.
14
,
1600127
(
2017
).
77.
Y.
Yue
,
F.
Wu
,
H.
Cheng
,
Y.
Xian
,
D.
Liu
,
X.
Lu
, and
X.
Pei
,
J. Appl. Phys.
121
,
033302
(
2017
).
78.
N.
Mericam-Bourdet
,
M.
Laroussi
,
A.
Begum
, and
E.
Karakas
,
J. Phys. D
42
,
055207
(
2009
).
79.
W.
Yan
and
D.
Economou
,
J. Phys. D
50
,
415205
(
2017
).
80.
X.
Lin
,
L.
Wang
, and
J.
Liu
,
Phys. Plasmas
28
,
013503
(
2021
).
81.
S.
Wu
,
X.
Lu
,
Y.
Yue
,
X.
Dong
, and
X.
Pei
,
Phys. Plasmas
23
,
103506
(
2016
).
82.
W.
Lee
,
T.
Tran
, and
C.
Oh
,
Phys. Plasmas
27
,
073502
(
2020
).
83.
T.
Petrova
,
G.
Petrov
,
D.
Boris
, and
S.
Walton
,
Phys. Plasmas
24
,
013501
(
2017
).
84.
W.
Yan
,
F.
Liu
,
C.
Sang
, and
D.
Wang
,
Phys. Plasmas
21
,
063505
(
2014
).
85.
B.
Ghimire
,
J.
Sornsakdanuphap
,
Y.
Hong
,
H.
Uhm
,
K.
Weltmann
, and
E.
Choi
,
Phys. Plasmas
24
,
073502
(
2017
).
87.
S.
Hofmann
and
P.
Bruggeman
,
IEEE Trans. Plasma Sci.
39
,
2332
(
2011
).
88.
Z.-S.
Chang
,
G.-J.
Zhang
,
X.-J.
Shao
, and
Z.-H.
Zhang
,
Phys. Plasmas
19
,
073513
(
2012
).
89.
K.
Niemi
,
S.
Reuter
,
L.
Graham
,
J.
Waskoenig
, and
T.
Gans
,
Appl. Phys. Lett.
95
,
151504
(
2009
).
90.
M.
Xaubet
,
L.
Giuliani
,
D.
Grondona
, and
F.
Minotti
,
Phys. Plasmas
24
,
013502
(
2017
).
91.
F.
Wu
,
J.
Li
,
Y.
Xian
,
X.
Tan
, and
X.
Lu
,
Plasma Processes Polym.
18
,
2100033
(
2021
).
92.
A.
van Gessel
,
E.
Carbone
,
P.
Bruggeman
, and
J.
van der Mullen
,
Plasma Sources Sci. Technol.
21
,
015003
(
2012
).
93.
B.
Klarenaar
,
O.
Guaitella
,
R.
Engeln
, and
A.
Sobota
,
Plasma Sources Sci. Technol.
27
,
085004
(
2018
).
94.
C.
Schregel
,
E.
Carbone
,
D.
Luggenhölscher
, and
U.
Czarnetzki
,
Plasma Sources Sci. Technol.
25
,
054003
(
2016
).
95.
B.
Klarenaar
,
M.
Grofulović
,
A.
Morillo-Candas
,
D.
Bekerom
,
M.
Damen
,
M.
Sanden
,
O.
Guaitella
, and
R.
Engeln
,
Plasma Sources Sci. Technol
27
,
045009
(
2018
).
You do not currently have access to this content.