By using a multispecies fluid model, the tunability and controllability of plasma parameters such as distributions of electron density, electron energy, ion density, and electric field in a microdielectric barrier discharge (DBD) with a charge injector electrode and driven by negatively polarized nanosecond pulsed voltage superimposed on a positive DC bias voltage are investigated. To this end, the effects of changing features of pulsed voltage like pulse rise time (10–20 ns), pulse peak width (10–15 ns), and pulse fall time (20–30 ns) on characteristics of argon plasma formed inside the reactor are studied. The results show that with the increase in pulse width and pulse rise time, the density of electron and ion increases, while fall time change does not significantly affect the plasma parameters. Generally, the results of this study explicitly prove the possibility of controlling plasma formed inside DBD reactors driven by negative pulse voltage combined with a positive DC voltage, which is very important in waste gas conversion applications.

1.
X.-F.
Wang
,
Q.-Q.
Fang
,
B.
Jia
,
Y.-Y.
Hu
,
Z.-C.
Wang
,
K-p
Yan
,
S.-Y.
Yin
,
Z.
Liu
, and
W.-Q.
Tan
,
Sci. Rep.
10
(
1
),
1064
(
2020
).
2.
D. B.
Graves
,
Phys. Plasmas
21
,
080901
(
2014
).
3.
N.
De Geyter
and
R.
Morent
,
Annu. Rev. Biomed. Eng.
14
,
255
(
2012
).
4.
S.
Lerouge
,
M.
Wertheimer
, and
Y.
L'H
,
Plasmas Polym.
6
,
175
(
2001
).
5.
N.
Jiang
,
C.
Qiu
,
L.
Guo
,
K.
Shang
,
N.
Lu
,
J.
Li
, and
Y.
Wu
,
Plasma Chem. Plasma Process.
39
,
227
(
2019
).
6.
R.
Snoeckx
and
A.
Bogaerts
,
Chem. Soc. Rev.
46
,
5805
(
2017
).
7.
A.
Bogaerts
and
E. C.
Neyts
,
ACS Energy Lett.
3
,
1013
(
2018
).
8.
V.
Fomin
,
P.
Tretyakov
, and
J.
Taran
,
Aerosp. Sci. Technol.
8
,
411
(
2004
).
9.
C.
Zhai
,
X.
Chou
,
J.
He
,
L.
Song
,
Z.
Zhang
,
T.
Wen
,
Z.
Tian
,
X.
Chen
,
W.
Zhang
,
Z.
Niu
 et al.,
Appl. Energy
231
,
1346
(
2018
).
10.
X.
Cheng
,
L.
Miao
,
Z.
Su
,
H.
Chen
,
Y.
Song
,
X.
Chen
, and
H.
Zhang
,
Microsyst. Nanoeng.
3
(
1
),
16074
(
2017
).
11.
R.-C.
Zhang
,
D.
Sun
,
R.
Zhang
,
W.-F.
Lin
,
M.
Macias-Montero
,
J.
Patel
,
S.
Askari
,
C.
McDonald
,
D.
Mariotti
, and
P.
Maguire
,
Sci. Rep.
7
,
46682
(
2017
).
12.
S. M.
Starikovskaia
,
J. Phys. D
39
,
R265
(
2006
).
13.
U.
Kogelschatz
,
Plasma Chem. Plasma Process.
23
(
1
),
1
(
2003
).
14.
F.
Massines
,
P.
Segur
,
N.
Gherardi
,
C.
Khamphan
, and
A.
Ricard
,
Surf. Coat. Technol.
174-175
,
8
(
2003
).
15.
U.
Kogelschatz
,
IEEE Trans. Plasma Sci.
30
,
1400
(
2002
).
16.
W. S.
Kang
,
J. M.
Park
,
Y.
Kim
, and
S. H.
Hong
,
IEEE Trans. Plasma Sci.
31
,
504
(
2003
).
17.
K.
Becker
,
K.
Schoenbach
, and
J. G.
Eden
,
J. Phys. D
39
,
R55
(
2006
).
18.
F.
Iza
,
G. J.
Kim
,
S. M.
Lee
,
J. K.
Lee
,
J. L.
Walsh
,
Y. T.
Zhang
, and
M. G.
Kong
,
Plasma Processes Polym.
5
,
322
(
2008
).
19.
P. J.
Lindner
and
R. S.
Besser
,
Chem. Eng. Technol.
35
,
1249
(
2012
).
20.
Y.
Gao
,
S.
Zhang
,
H.
Sun
,
R.
Wang
,
X.
Tu
, and
T.
Shao
,
Appl. Energy
226
,
534
(
2018
).
21.
Y.
Nishida
,
H.-C.
Chiang
,
T.-C.
Chen
, and
C.-Z.
Cheng
,
IEEE Trans. Plasma Sci.
42
,
3765
(
2014
).
22.
O.
Khalifeh
,
A.
Mosallanejad
,
H.
Taghvaei
,
M. R.
Rahimpour
, and
A.
Shariati
,
Appl. Energy
169
,
585
(
2016
).
23.
H. K.
Song
,
H.
Lee
,
J.-W.
Choi
, and
B.-K.
Na
,
Plasma Chem. Plasma Process.
24
,
57
(
2004
).
24.
S.
Zhang
,
Y.
Gao
,
H.
Sun
,
H.
Bai
,
R.
Wang
, and
T.
Shao
,
J. Phys. D
51
,
274005
(
2018
).
25.
X.
Wang
,
Y.
Gao
,
S.
Zhang
,
H.
Sun
,
J.
Li
, and
T.
Shao
,
Appl. Energy
243
,
132
(
2019
).
26.
S.
Chen
,
J.
Nobelen
, and
S.
Nijdam
,
Plasma Sources Sci. Technol.
26
,
095005
(
2017
).
27.
A. M.
Loveless
,
G.
Meng
,
Q.
Ying
,
F.
Wu
,
K.
Wang
,
Y.
Cheng
, and
A. L.
Garner
,
Sci. Rep.
9
(
1
),
5669
(
2019
).
28.
A.
Venkattraman
and
A. A.
Alexeenko
,
Phys. Plasmas
19
,
123515
(
2012
).
29.
D.
Lee
,
J. M.
Park
,
S. H.
Hong
, and
Y.
Kim
,
IEEE Trans. Plasma Sci.
33
,
949
(
2005
).
30.
S.
Gadkari
,
X.
Tu
, and
S.
Gu
,
Phys. Plasmas
24
,
093510
(
2017
).
31.
C.
De Bie
,
B.
Verheyde
,
T.
Martens
,
J.
van Dijk
,
S.
Paulussen
, and
A.
Bogaerts
,
Plasma Processes Polym.
8
,
1033
(
2011
).
32.
K. V.
Laer
and
A.
Bogaerts
,
Plasma Sources Sci. Technol
26
,
085007
(
2017
).
33.
X.
Che
,
T.
Shao
,
W.
Nie
, and
P.
Yan
,
J. Phys. D
45
,
145201
(
2012
).
34.
A. V.
Likhanskii
,
M. N.
Shneider
,
S. O.
Macheret
, and
R. B.
Miles
,
Phys. Plasmas
14
,
073501
(
2007
).
35.
C.-C.
Wang
and
S.
Roy
,
J. Appl. Phys.
111
,
103302
(
2012
).
36.
Y.
Liu
,
K.
van't Veer
,
F.
Peeters
,
D.
Mihailova
,
J.
Van Dijk
,
S.
Starostin
,
M.
Van De Sanden
, and
H. De
Vries
,
Plasma Sources Sci. Technol.
27
,
105016
(
2018
).
37.
G.
Hagelaar
and
L.
Pitchford
,
Plasma Sources Sci. Technol.
14
,
722
(
2005
).
38.
D. F.
Opaits
,
A. V.
Likhanskii
,
G.
Neretti
,
S.
Zaidi
,
M. N.
Shneider
,
R. B.
Miles
, and
S. O.
Macheret
,
J. Appl. Phys.
104
,
043304
(
2008
).
39.
K.
Van Laer
and
A.
Bogaerts
,
Plasma Sources Sci. Technol.
25
,
015002
(
2016
).
40.
A. M.
Loveless
and
A. L.
Garner
,
Phys. Plasmas
24
,
113522
(
2017
).
You do not currently have access to this content.