The studies of incoherent single-particle and collective multi-particle effects are, in general, separated in accelerator beam dynamics in that the two dynamical phenomena involve quite different time scales. Recent experimental measurements indicate that in some parameter regime, the small-angle, multiple scattering effects within a high-brightness electron beam can have a strong influence on microbunched beam dynamics. In this paper, we apply our recently developed semi-analytical kinetic analysis to investigate the collective phase space microbunched dynamics in the presence of incoherent single-particle effects. Particular emphasis will be placed on evaluation of the intrinsic or slice energy spread. An example of two linear beam transport lines, followed by two identical, interleaving bunch compressor chicanes, is then presented. The semi-analytical calculations are consistent with particle tracking simulations. Moreover, the threshold condition is derived, indicating the relation among relevant physical quantities. At threshold, the incoherent effect can be beneficial for effective suppression of the collective microbunching instability. We expect that this work could shed light on high-brightness electron transport beamline design to improve short-wavelength free-electron laser performance.

1.
H.
Wiedemann
,
Particle Accelerator Physics
(
Springer Nature
,
2015
).
2.
S.-Y.
Lee
,
Accelerator Physics
(
World Scientific Publishing
,
2018
).
3.
A.
Wolski
,
Beam Dynamics in High Energy Particle Accelerators
(
World Scientific
,
2014
).
4.
M.
Conte
and
W. W.
MacKay
,
Introduction to the Physics of Particle Accelerators
(
World Scientific Publishing Company
,
2008
).
5.
A. W.
Chao
,
Physics of Collective Beam Instabilities in High Energy Accelerators
(
Wiley
,
1993
).
6.
K.-Y.
Ng
,
Physics of Intensity Dependent Beam Instabilities
(
World Scientific
,
2006
).
7.
R. C.
Davidson
and
Q.
Hong
,
Physics of Intense Charged Particle Beams in High Energy Accelerators
(
World Scientific
,
2001
).
8.
A.
Piwinski
, “
Intra-beam-scattering
,” in
Proceedings of the 9th International Conference on High Energy Accelerators
, Stanford, CA, USA (
1974
), p.
405
.
9.
A.
Piwinski
, “
Intra-beam scattering in presence of linear coupling
,” Technical Report No. DESY-90-113 (Deutsches Elektronen-Synchrotron (DESY),
1990
).
10.
J. D.
Bjorken
and
S. K.
Mtingwa
, “
Intrabeam scattering
,”
Part. Accel.
13
,
115
143
(
1982
); available at https://cds.cern.ch/record/140304/files/p115.pdf.
11.
M.
Martini
,
F.
Antoniou
, and
Y.
Papaphilippou
, “
Intrabeam scattering
,”
ICFA Beam Dyn. Newsl.
69
,
38
59
(
2016
); available at http://cds.cern.ch/record/2266030/files/ICFA69_38-59.pdf.
12.
K.
Kubo
and
K.
Oide
, “
Intrabeam scattering in electron storage rings
,”
Phys. Rev. Spec. Top.-Accel. Beams
4
,
124401
(
2001
).
13.
K.
Kubo
,
S. K.
Mtingwa
, and
A.
Wolski
, “
Intrabeam scattering formulas for high energy beams
,”
Phys. Rev. Spec. Top.-Accel. Beams
8
,
081001
(
2005
).
14.
S.
Nagaitsev
, “
Intrabeam scattering formulas for fast numerical evaluation
,”
Phys. Rev. Spec. Top.-Accel. Beams
8
,
064403
(
2005
).
15.
V.
Lebedev
, “
Single and multiple intrabeam scattering in hadron colliders
,”
AIP Conf. Proc.
773
,
440
442
(
2005
).
16.
P.
Zenkevich
,
O.
Boine-Frankenheim
, and
A.
Bolshakov
, “
Kinetic effects in multiple intra-beam scattering
,”
AIP Conf. Proc.
773
,
425
(
2005
).
17.
Y.
Cai
, “
Linear theory of microwave instability in electron storage rings
,”
Phys. Rev. Spec. Top.-Accel. Beams
14
,
061002
(
2011
).
18.
G.
Stupakov
and
S.
Heifets
, “
Beam instability and microbunching due to coherent synchrotron radiation
,”
Phys. Rev. Spec. Top.-Accel. Beams
5
,
054402
(
2002
).
19.
K.
Bane
,
Y.
Cai
, and
G.
Stupakov
, “
Threshold studies of the microwave instability in electron storage rings
,”
Phys. Rev. Spec. Top.-Accel. Beams
13
,
104402
(
2010
).
20.
R. L.
Warnock
, “
Study of bunch instabilities by the nonlinear Vlasov-Fokker-Planck equation
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
561
,
186
194
(
2006
).
21.
M.
Venturini
,
R.
Warnock
,
R.
Ruth
, and
J. A.
Ellison
, “
Coherent synchrotron radiation and bunch stability in a compact storage ring
,”
Phys. Rev. Spec. Top.-Accel. Beams
8
,
014202
(
2005
).
22.
Z.
Huang
, “
Intrabeam scattering in an x-ray FEL driver
,”
Technical Report No. SLAC-TN-05-026
(
Stanford Linear Accelerator Center (SLAC)
,
Menlo Park, CA
,
2005
).
23.
S.
Di Mitri
, “
Intrabeam scattering in high brightness electron linacs
,”
Phys. Rev. Spec. Top.-Accel. Beams
17
,
074401
(
2014
).
24.
P.
Emma
,
R.
Akre
,
J.
Arthur
,
R.
Bionta
,
C.
Bostedt
,
J.
Bozek
,
A.
Brachmann
,
P.
Bucksbaum
,
R.
Coffee
,
F.-J.
Decker
 et al., “
First lasing and operation of an ångstrom-wavelength free-electron laser
,”
Nat. Photonics
4
,
641
647
(
2010
).
25.
T.
Ishikawa
,
H.
Aoyagi
,
T.
Asaka
,
Y.
Asano
,
N.
Azumi
,
T.
Bizen
,
H.
Ego
,
K.
Fukami
,
T.
Fukui
,
Y.
Furukawa
 et al., “
A compact x-ray free-electron laser emitting in the sub-ångström region
,”
Nat. Photonics
6
,
540
544
(
2012
).
26.
W. a
Ackermann
,
G.
Asova
,
V.
Ayvazyan
,
A.
Azima
,
N.
Baboi
,
J.
Bähr
,
V.
Balandin
,
B.
Beutner
,
A.
Brandt
,
A.
Bolzmann
 et al., “
Operation of a free-electron laser from the extreme ultraviolet to the water window
,”
Nat. Photonics
1
,
336
342
(
2007
).
27.
T.
Shintake
,
H.
Tanaka
,
T.
Hara
,
T.
Tanaka
,
K.
Togawa
,
M.
Yabashi
,
Y.
Otake
,
Y.
Asano
,
T.
Bizen
,
T.
Fukui
 et al., “
A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region
,”
Nat. Photonics
2
,
555
559
(
2008
).
28.
E.
Allaria
,
R.
Appio
,
L.
Badano
,
W.
Barletta
,
S.
Bassanese
,
S.
Biedron
,
A.
Borga
,
E.
Busetto
,
D.
Castronovo
,
P.
Cinquegrana
 et al., “
Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet
,”
Nat. Photonics
6
,
699
704
(
2012
).
29.
H.-S.
Kang
,
C.-K.
Min
,
H.
Heo
,
C.
Kim
,
H.
Yang
,
G.
Kim
,
I.
Nam
,
S. Y.
Baek
,
H.-J.
Choi
,
G.
Mun
 et al., “
Hard x-ray free-electron laser with femtosecond-scale timing jitter
,”
Nat. Photonics
11
,
708
713
(
2017
).
30.
K.
Hirata
,
J. M.
Jowett
,
W.
Chou
,
S.
Ivanov
,
H.
Mais
,
J.
Wei
,
D.
Whittum
, and
C.
Zhang
,
Beam Dynamics Newsletter
(
ICFA
,
2001
).
31.
L.
Merminga
,
D. R.
Douglas
, and
G. A.
Krafft
, “
High-current energy-recovering electron linacs
,”
Annu. Rev. Nucl. Part. Sci.
53
,
387
429
(
2003
).
32.
N.
Vinokurov
,
E.
Dementyev
,
B.
Dovzhenko
,
Y. V.
Getmanov
,
B.
Knyazev
,
E.
Kolobanov
,
V.
Kubarev
,
G.
Kulipanov
,
L.
Medvedev
,
S.
Miginsky
 et al., “
Novosibirsk free electron laser facility: Two-orbit ERL with two FELs
,” in
Proceedings of FEL-2009
, TUOD01 (
2009
).
33.
G.
Kulipanov
,
Y. V.
Getmanov
,
O.
Shevchenko
,
A.
Skrinsky
,
N.
Vinokurov
,
M.
Kovalchuk
, and
V.
Korchuganov
, “
MARS: Fourth generation x-ray light source based on multiturn energy-recovery linac
,” in
RuPAC 2012 Contributions to the Proceedings-23rd Russian Particle Accelerator Conference
(
2012
), pp.
123
125
.
34.
A. W.
Chao
,
K. H.
Mess
,
M.
Tigner
, and
F.
Zimmermann
,
Handbook of Accelerator Physics and Engineering
(
World Scientific
,
2013
).
35.
J.
Rosenzweig
,
C.
Pellegrini
,
L.
Serafini
,
C.
Ternieden
, and
G.
Travish
, “
Space-charge oscillations in a self-modulated electron beam in multi-undulator free-electron lasers
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
393
,
376
379
(
1997
).
36.
M.
Venturini
, “
Models of longitudinal space-charge impedance for microbunching instability
,”
Phys. Rev. Spec. Top.-Accel. Beams
11
,
034401
(
2008
).
37.
J.
Murphy
,
R.
Gluckstern
, and
S.
Krinsky
, “
Longitudinal wake field for an electron moving on a circular orbit
,”
Part. Accel.
57
,
9
64
(
1996
); available at http://cds.cern.ch/record/1120287/files/p9.pdf.
38.
Y. S.
Derbenev
,
E.
Saldin
,
V.
Shiltsev
, and
J.
Rossbach
, “
Microbunch radiative tail-head interaction
,”
Technical Report No. TESLA-FEL-1995-05
(
1995
).
39.
E. L.
Saldin
,
E. A.
Schneidmiller
, and
M.
Yurkov
, “
On the coherent radiation of an electron bunch moving in an arc of a circle
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
398
,
373
394
(
1997
).
40.
G.
Stupakov
and
P.
Emma
, “
CSR wake for a short magnet in ultrarelativistic limit
,” in
Proceedings of the Eighth European Particle Accelerator Conference
(
2002
), Vol.
6
.
41.
R.
Li
and
C.-Y.
Tsai
, “
CSR impedance for non-ultrarelativistic beams
,” in
6th International Particle Accelerator Conference (MOPMN004)
(
2015
).
42.
R.
Li
and
C.-Y.
Tsai
, “
Entrance and exit CSR impedance for non-ultrarelativistic beam
,” in
8th International Particle Accelerator Conference (WEPIK113)
(
2017
).
43.
S.
Heifets
,
G.
Stupakov
, and
S.
Krinsky
, “
Coherent synchrotron radiation instability in a bunch compressor
,”
Phys. Rev. Spec. Top.-Accel. Beams
5
,
064401
(
2002
).
44.
Z.
Huang
and
K.-J.
Kim
, “
Formulas for coherent synchrotron radiation microbunching in a bunch compressor chicane
,”
Phys. Rev. Spec. Top.-Accel. Beams
5
,
074401
(
2002
).
45.
C.-Y.
Tsai
,
D.
Douglas
,
R.
Li
, and
C.
Tennant
, “
Linear microbunching analysis for recirculation machines
,”
Phys. Rev. Accel. Beams
19
,
114401
(
2016
).
46.
C.-Y.
Tsai
,
Y. S.
Derbenev
,
D.
Douglas
,
R.
Li
, and
C.
Tennant
, “
Vlasov analysis of microbunching instability for magnetized beams
,”
Phys. Rev. Accel. Beams
20
,
054401
(
2017
).
47.
M.
Venturini
,
R.
Warnock
, and
A.
Zholents
, “
Vlasov solver for longitudinal dynamics in beam delivery systems for x-ray free electron lasers
,”
Phys. Rev. Spec. Top.-Accel. Beams
10
,
054403
(
2007
).
48.
R.
Bonifacio
,
C.
Pellegrini
, and
L.
Narducci
, “
Collective instabilities and high-gain regime free electron laser
,”
AIP Conf. Proc.
118
,
236
259
(
1984
).
49.
K.-J.
Kim
, “
Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission in free-electron lasers
,”
Phys. Rev. Lett.
57
,
1871
(
1986
).
50.
S.
Krinsky
and
L.
Yu
, “
Output power in guided modes for amplified spontaneous emission in a single-pass free-electron laser
,”
Phys. Rev. A
35
,
3406
(
1987
).
51.
E.
Saldin
,
E.
Schneidmiller
, and
M. V.
Yurkov
,
The Physics of Free Electron Lasers
(
Springer Science & Business Media
,
1999
).
52.
K.-J.
Kim
,
Z.
Huang
, and
R.
Lindberg
,
Synchrotron Radiation and Free-Electron Lasers
(
Cambridge University Press
,
2017
).
53.
E. L.
Saldin
,
E. A.
Schneidmiller
, and
M.
Yurkov
, “
Klystron instability of a relativistic electron beam in a bunch compressor
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
490
,
1
8
(
2002
).
54.
M.
Borland
, “
Modeling of the microbunching instability
,”
Phys. Rev. Spec. Top.-Accel. Beams
11
,
030701
(
2008
).
55.
J.
Qiang
,
Y.
Ding
,
P.
Emma
,
Z.
Huang
,
D.
Ratner
,
T.
Raubenheimer
,
M.
Venturini
, and
F.
Zhou
, “
Start-to-end simulation of the shot-noise driven microbunching instability experiment at the linac coherent light source
,”
Phys. Rev. Accel. Beams
20
,
054402
(
2017
).
56.
D.
Ratner
,
C.
Behrens
,
Y.
Ding
,
Z.
Huang
,
A.
Marinelli
,
T.
Maxwell
, and
F.
Zhou
, “
Time-resolved imaging of the microbunching instability and energy spread at the linac coherent light source
,”
Phys. Rev. Spec. Top.-Accel. Beams
18
,
030704
(
2015
).
57.
T.
Shaftan
and
Z.
Huang
, “
Experimental characterization of a space charge induced modulation in high-brightness electron beam
,”
Phys. Rev. Spec. Top.-Accel. Beams
7
,
080702
(
2004
).
58.
A. H.
Lumpkin
,
R.
Dejus
,
J.
Lewellen
,
W.
Berg
,
S.
Biedron
,
M.
Borland
,
Y.
Chae
,
M.
Erdmann
,
Z.
Huang
,
K.-J.
Kim
 et al., “
Comprehensive z-dependent measurements of electron-beam microbunching using COTR in a saturated SASE FEL
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
483
,
394
401
(
2002
).
59.
A.
Brynes
,
I.
Akkermans
,
E.
Allaria
,
L.
Badano
,
S.
Brussaard
,
G.
De Ninno
,
D.
Gauthier
,
G.
Gaio
,
L.
Giannessi
,
N.
Mirian
 et al., “
Characterisation of microbunching instability with 2D Fourier analysis
,”
Sci. Rep.
10
,
5059
(
2020
).
60.
C.-Y.
Tsai
,
W.
Qin
,
K.
Fan
,
X.
Wang
,
J.
Wu
, and
G.
Zhou
, “
Theoretical formulation of phase space microbunching instability in the presence of intrabeam scattering for single-pass or recirculation accelerators
,”
Phys. Rev. Accel. Beams
23
,
124401
(
2020
).
61.
S.
Di Mitri
,
G.
Perosa
,
A.
Brynes
,
I.
Setija
,
S.
Spampinati
,
P.
Williams
,
A.
Wolski
,
E.
Allaria
,
S.
Brussaard
,
L.
Giannessi
 et al., “
Experimental evidence of intrabeam scattering in a free-electron laser driver
,”
New J. Phys.
22
,
083053
(
2020
).
62.
M.
Borland
,
Y.
Chae
,
P.
Emma
,
J.
Lewellen
,
V.
Bharadwaj
,
W.
Fawley
,
P.
Krejcik
,
C.
Limborg
,
S.
Milton
,
H.-D.
Nuhn
 et al., “
Start-to-end simulation of self-amplified spontaneous emission free electron lasers from the gun through the undulator
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
483
,
268
272
(
2002
).
63.
M.
Borland
, “
Controlling noise and choosing binning parameters for reliable CSR and LSC simulation in ELEGANT
,” Technical Report No. OAG-TN-2005-027 (
2005
).
64.
C.
Tsai
and
R.
Li
, “
Simulation of coherent synchrotron radiation induced microbunching gain using elegant
,”
Technical Report No. JLAB-TN-14-016
(
2014
).
65.
J. A.
Bittencourt
,
Fundamentals of Plasma Physics
(
Springer Science & Business Media
,
2013
).
66.
J.
Wu
,
Z.
Huang
, and
P.
Emma
, “
Analytical analysis of longitudinal space charge effects for a bunched beam with radial dependence
,”
Phys. Rev. Spec. Top.-Accel. Beams
11
,
040701
(
2008
).
67.
C.-Y.
Tsai
, “
An alternative view of coherent synchrotron radiation induced microbunching development in multibend recirculation arcs
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
943
,
162499
(
2019a
).
68.
C.-Y.
Tsai
,
D.
Douglas
,
R.
Li
, and
C.
Tennant
, “
Multistage CSR microbunching gain development in transport or recirculation arcs
,” in
Proceedings of FEL2015
, Daejeon, Korea (MOP087) (
2015
).
69.
S. K.
Mtingwa
and
A. V.
Tollestrup
, “
Intrabeam scattering formulae for asmptotic beams with unequal horizontal and vertical emittances
,”
Technical Report No. FERMILAB-PUB-89/224
(
1987
).
70.
Z.
Huang
,
M.
Borland
,
P.
Emma
,
J.
Wu
,
C.
Limborg
,
G.
Stupakov
, and
J.
Welch
, “
Suppression of microbunching instability in the linac coherent light source
,”
Phys. Rev. Spec. Top.-Accel. Beams
7
,
074401
(
2004
).
71.
F.
Rice
, “
A frequency-domain derivation of shot-noise
,”
Am. J. Phys.
84
,
44
51
(
2016
).
72.
Wolfram Research Inc.
,
Mathematica, Version 12.1
(
Wolfram Research Inc.
,
Champaign, IL
,
2020
).
73.
D.
Douglas
,
S.
Benson
,
A.
Hofler
,
R.
Kazimi
,
G.
Krafft
,
R.
Li
,
Y.
Roblin
,
C.
Tennant
,
B.
Terzifa
, and
C.-Y.
Tsai
, “
Control of synchrotron radiation effects during recirculation
,” in
Proceedings of the 6th International Particle Accelerator Conference (IPAC'15)
, Richmond, VA, USA, May 3–8 (TUPMA038) (
2015a
).
74.
D.
Douglas
,
S.
Benson
,
A.
Hofler
,
R.
Kazimi
,
G.
Krafft
,
R.
Li
,
Y.
Roblin
,
C.
Tennant
,
B.
Terzifa
, and
C.-Y.
Tsai
, “
Control of synchrotron radiation effects during recirculation with bunch compression
,” in
Proceedings of the 6th International Particle Accelerator Conference (IPAC'15)
, Richmond, VA, USA, May 3–8 (TUPMA034) (
2015b
).
75.
M.
Borland
, “
Elegant: A flexible SDDS-compliant code for accelerator simulation
,”
Technical Report No. LS-287
(
Argonne National Lab
.,
IL (US)
,
2000
).
76.
Y.
Wang
and
M.
Borland
, “
Pelegant: A parallel accelerator simulation code for electron generation and tracking
,”
AIP Conf. Proc.
877
,
241
247
(
2006
).
77.
A.
Xiao
and
M.
Borland
, “
Intrabeam scattering effect calculated for a non-Gaussian-distributed linac beam
,” in
Proceedings of PAC09
, Vancouver, BC, Canada (
2010
).
78.

The number of LSC bins also depends on the total bunch duration employed in the particle tracking simulation. The total length of the bunch is set about 7 mm in our example. In postprocessing the simulation results, the first and last 25% of the bunch are cut to avoid the edge effects, a distortion due to LSC and the bunch compression.

79.
J.
Qiang
,
R.
Ryne
,
M.
Venturini
,
A.
Zholents
, and
I.
Pogorelov
, “
High resolution simulation of beam dynamics in electron linacs for x-ray free electron lasers
,”
Phys. Rev. Spec. Top.-Accel. Beams
12
,
100702
(
2009
).
80.
C.-Y.
Tsai
, “
Concatenated analyses of phase space microbunching in high brightness electron beam transport
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
940
,
462
474
(
2019b
).
You do not currently have access to this content.