In gyrotrons operating in high-order modes, during the startup process, the shadowing of the operating mode by two sidebands may take place. By “shadowing,” we mean the situation when, during the voltage rise, one of the parasitic modes is excited first, and this excitation prevents the excitation of the desired mode. Then, the oscillations of the first parasitic mode, whose frequency is higher than the frequency of the desired operating mode, can be replaced by excitation of the second parasitic mode, whose frequency is lower than the operating one. As a result, the desired mode remains in the “shadow” of these parasitic modes and is never excited. This paper describes such effect in gyrotrons with diode-type electron guns. This paper consists of two parts. First, the problem is studied in a generalized approach, which means that the results are valid to gyrotrons operating at arbitrary voltages and in any modes. By using this approach, it is possible to determine the critical density of the mode spectrum, above which the shadowing occurs. This study is carried out for the cases when the interaction between modes is synchronous and when it is nonsynchronous. Second, this paper contains the analysis of a typical Megawatt-class gyrotron with a diode-type electron gun. It is studied whether the moving of this gyrotron to operating in higher-order modes will lead to the shadowing of the desired mode or other, more complicated, dynamic, and/or stochastic processes will take place.

1.
V. A.
Flyagin
,
A. V.
Gaponov
,
I.
Petelin
, and
V. K.
Yulpatov
,
IEEE Trans. Microwave Theory Tech.
25
,
514
(
1977
).
2.
G. S.
Nusinovich
,
M. K. A.
Thumm
, and
M. I.
Petelin
,
J. Infrared Millimeter Terahertz Waves
35
,
325
(
2014
).
3.
4.
M. K. A.
Thumm
,
J. Infrared Millimeter Terahertz Waves
32
,
241
(
2011
).
5.
M. K. A.
Thumm
,
G. G.
Denisov
,
K.
Sakamoto
, and
M. Q.
Tran
,
Nucl. Fusion
59
,
073001
(
2019
).
6.
V. A.
Flyagin
and
G. S.
Nusinovich
,
Proc. IEEE
76
,
644
(
1988
).
7.
M. A.
Moiseev
and
G. S.
Nusinovich
,
Radiophys. Quantum Electron.
17
,
1305
(
1974
).
8.
K.
Sakamoto
,
A.
Kasugai
,
K.
Takahashi
,
R.
Minami
,
N.
Kobayashi
, and
K.
Kajiwara
,
Nat. Phys.
3
,
411
(
2007
).
9.
G. S.
Nusinovich
,
O. V.
Sinitsyn
,
L.
Velikovich
,
M.
Yeddulla
,
T. M.
Antonsen
, Jr.
,
A. N.
Vlasov
,
S. R.
Cauffman
, and
K.
Felch
,
IEEE Trans. Plasma Sci.
32
,
841
(
2004
).
10.
G. S.
Nusinovich
,
Introduction to the Physics of Gyrotrons
(
Johns Hopkins University Press
,
Baltimore
,
2004
).
11.
G. S.
Nusinovich
,
Elekron. Tekh. Ser.
1
,
44
49
(
1974
).
12.
E.
Borie
and
B.
Jödicke
,
Int. J. Infrared Millimeter Waves
8
,
207
(
1987
).
13.
D. R.
Whaley
,
M. Q.
Tran
,
T. M.
Tran
, and
T. M.
Antonsen
,
IEEE Trans. Plasma Sci.
22
,
850
(
1994
).
14.
B.
Levush
and
T. M.
Antonsen
,
IEEE Trans. Plasma Sci.
18
,
260
(
1990
).
15.
D. R.
Whaley
,
M. Q.
Tran
,
S.
Alberti
,
T. M.
Tran
,
T. M.
Antonsen
, Jr.
, and
C.
Tran
,
Phys. Rev. Lett.
75
,
1304
(
1995
).
16.
O.
Dumbrajs
,
T.
Saito
, and
Y.
Tatematsu
,
Phys. Plasmas
23
,
023106
(
2016
).
17.
G. S.
Nusinovich
,
M.
Yeddulla
,
T. M.
Antonsen
, and
A. N.
Vlasov
,
Phys. Rev. Lett.
96
,
125101
(
2006
).
18.
E. M.
Choi
,
C. D.
Marchewka
,
I.
Mastovsky
,
J. R.
Sirigiri
,
M. A.
Shapiro
, and
R. J.
Temkin
,
Phys. Plasmas
13
,
023103
(
2006
).
19.
G. S.
Nusinovich
,
X.
Chen
,
O.
Dumbrajs
,
H.
Xiao
, and
X.
Han
,
Phys. Plasmas
27
,
073103
(
2020
).
20.
G. S.
Nusinovich
,
IEEE Trans. Plasma Sci.
27
,
313
(
1999
).
21.
G. S.
Nusinovich
,
Radiophys. Quantum Electron.
28
,
926
(
1985
).
22.
V.
Zapevalov
and
G.
Nusinovich
,
RaEl
30
,
563
(
1985
).
23.
M. Y.
Glyavin
and
G. S.
Nusinovich
,
Radiotekh. Elektron.
36
,
512
(
1991
).
24.
A. L.
Gol'denberg
and
M. I.
Petelin
,
Radiophys. Quantum Electron.
16
,
106
(
1973
).
25.
N. S.
Ginzburg
,
A. S.
Sergeev
, and
I. V.
Zotova
,
Phys. Plasmas
22
,
033101
(
2015
).
26.
O.
Dumbrajs
and
H.
Kalis
,
Phys. Plasmas
24
,
093111
(
2017
).
27.
G. S.
Nusinovich
,
Int. J. Electron.
51
,
457
(
1981
).
28.
J.
Jelonnek
,
F.
Albajar
,
S.
Alberti
,
K.
Avramidis
,
P.
Benin
,
T.
Bonicelli
,
F.
Cismondi
,
V.
Erckmann
,
G.
Gantenbein
,
K.
Hesch
,
J.-P.
Hogge
,
S.
Illy
,
Z. C.
Ioannidis
,
J.
Jin
,
H.
Laqua
,
G. P.
Latsas
,
F.
Legrand
,
G.
Michel
,
I. G.
Pagonakis
,
B.
Piosczyk
,
Y.
Rozier
,
T.
Rzesnicki
,
I. G.
Tigelis
,
M.
Thumm
,
M. Q.
Tran
, and
J. L.
Vomvoridis
,
IEEE Trans. Plasma Sci.
42
,
1135
(
2014
).
29.
K. A.
Avramidis
,
I. G.
Pagonakis
,
I. G.
Chelis
,
G.
Gantenbein
,
Z. C.
Ioannidis
,
D. V.
Peponis
,
T.
Rzesnicki
, and
J.
Jelonnek
, in
41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
(
2016
), pp.
1
2
.
30.
N. A.
Zavol'skii
and
G. S.
Nusinovich
,
Radiophys. Quantum Electron.
33
,
627
(
1990
).
31.
E.
Borie
and
B.
Jödicke
,
Int. J. Electron.
72
,
721
(
1992
).
32.
G. S.
Nusinovich
,
A. N.
Vlasov
,
T. M.
Antonsen
, Jr.
,
J.
Lohr
,
B. G.
Danly
, and
J. P.
Hogge
,
Phys. Plasmas
15
,
103101
(
2008
).
33.
O. V.
Sinitsyn
,
G. S.
Nusinovich
, and
T. M.
Antonsen
, Jr.
,
Phys. Plasmas
19
,
063114
(
2012
).
You do not currently have access to this content.