A new scenario for solar flare eruption in the coronal holes is analyzed by using MHD stability concepts for a spheromak configuration. The stability properties of a spheromak partially embedded into a conducting surface are studied using three dimensional MHD simulations. In agreement with the analytical theory, a large degree of line-tying stabilizes the spheromak's tilt instability, while the elongation has a destabilizing effect. High-resolution nonlinear simulations also demonstrate current sheet formation at the upper surface of the spheromak, where the tilted magnetic field of the spheromak reconnects with the background magnetic field. The calculated stability threshold and the observed magnetic reconnection support a model of coronal jet eruptions where a dome-like magnetic structure grows through flux emergence on the solar surface, tilts, reconnects, and erupts. Countering the effect from elongation, line-tying strongly stabilizes a spheromak growing from a flux-emergence process, suggesting that to accelerate the onset of eruptive coronal jets, there must be magnetic reconnection at the bottom of the spheromak to detach the structure from the solar surface.

1.
K.
Shibata
,
S.
Nozawa
, and
R.
Matsumoto
, “
Magnetic reconnection associated with emerging magnetic flux
,”
Publ. Astron. Soc. Jpn.
44
,
265
(
1992
), available at http://articles.adsabs.harvard.edu/full/1992PASJ...44..265S
2.
K.
Shibata
,
T.
Nakamura
,
T.
Matsumoto
,
K.
Otsuji
,
T.
Ueno
,
R.
Kitai
,
S.
Nozawa
,
S.
Tsuneta
,
Y.
Suematsu
,
K.
Ichimoto
,
T.
Shimizu
,
Y.
Katsukawa
,
T. D.
Tarbell
,
T. E.
Berger
,
B. W.
Lites
,
R. A.
Shine
, and
A. M.
Title
, “
Chromospheric anemone jets as evidence of ubiquitous reconnection
,”
Science
318
,
1591
(
2007
).
3.
B.
Filippov
,
L.
Golub
, and
S.
Koutchmy
, “
X-ray jet dynamics in a polar coronal hole region
,”
Sol. Phys.
254
,
259
(
2009
).
4.
T.
Yokoyama
and
K.
Shibata
, “
Numerical simulation of solar coronal x-ray jets based on the magnetic reconnection model
,”
Publ. Astron. Soc. Jpn.
48
,
353
(
1996
).
5.
P. F.
Wyper
,
S. K.
Antiochos
, and
R.
DeVore
, “
A universal model for solar eruptions
,”
Nature
544
,
452
455
(
2017
).
6.
N. E.
Raouafi
,
S.
Patsourakos
,
E.
Pariat
,
P. R.
Young
,
A. C.
Sterling
,
A.
Savcheva
,
M.
Shimojo
,
F.
Moreno-Insertis
,
C. R.
DeVore
,
V.
Archontis
,
T.
Török
,
H.
Mason
,
W.
Curdt
,
K.
Meyer
,
K.
Dalmasse
, and
Y.
Matsui
, “
Solar coronal jets: Observations, theory, and modeling
,”
Space Sci. Rev.
201
,
1
(
2016
).
7.
A. C.
Sterling
,
R. L.
Moore
,
D. A.
Falconer
, and
M.
Adams
, “
Small-scale filament eruptions as the driver of x-ray jets in solar coronal holes
,”
Nature
523
,
437
(
2015
).
8.
P.
Devi
,
B.
Joshi
,
R.
Chandra
,
P. K.
Mitra
,
A. M.
Veronig
, and
R.
Joshi
, “
Development of a confined circular-cum-parallel ribbon flare and associated pre-flare activity
,”
Sol. Phys.
295
,
75
(
2020
).
9.
S. S.
Nayak
,
R.
Bhattacharyya
,
A.
Prasad
,
Q.
Hu
,
S.
Kumar
, and
B.
Joshi
, “
A data-constrained magnetohydrodynamic simulation of successive events of blowout jet and c-class flare in NOAA AR 12615
,”
Astrophys. J.
875
,
10
(
2019
).
10.
K. A.
Meyer
,
A. S.
Savcheva
,
D. H.
Mackay
, and
E. E.
DeLuca
, “
Nonlinear force-free modeling of solar coronal jets in theoretical configurations
,”
Astrophys. J.
880
,
62
(
2019
).
11.
E.
Pariat
,
S. K.
Antiochos
, and
C. R.
DeVore
, “
Three-dimensional modeling of quasi-homologous solar jets
,”
Astrophys. J.
714
,
1762
(
2010
).
12.
M.
Yamada
, in
Proceedings of the 62nd Annual Meeting of the APS Division of Plasma Physics, Virtual Meeting
,
2020
.
13.
P.
Bellan
,
Spheromaks: A Practical Application of Magnetohydrodynamic Dynamos and Plasma Self Organization
(
Imperial College Press
,
2000
).
14.
J. B.
Taylor
,
Phys. Rev. Lett.
33
,
1139
(
1974
).
15.
T.
Jarboe
,
I.
Henins
,
A. R.
Sherwood
,
C. W.
Barnes
, and
H. W.
Hoida
, “
Slow formation and sustainment of spheromaks by a coaxial magnetized plasma source
,”
Phys. Rev. Lett.
51
,
39
(
1983
).
16.
S. C.
Hsu
and
P. M.
Bellan
, “
Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation
,”
Phys. Rev. Lett.
90
,
215002
(
2003
).
17.
C. R.
Sovinec
,
J. M.
Finn
, and
D.
del Castillo-Negrete
, “
Formation and sustainment of electrostatically driven spheromaks in the resistive magnetohydrodynamic model
,”
Phys. Plasmas
8
,
475
(
2001
).
18.
C.
Munson
,
F.
Janos
,
Wysocki
, and
M.
Yamada
, “
Experimental control of the spheromak tilting instability
,”
Phys. Fluids
28
,
1525
1527
(
1985
).
19.
J. M.
Finn
,
W. M.
Manheimer
, and
E.
Ott
, “
Spheromak tilting instability in cylindrical geometry
,”
Phys. Fluids
24
,
1336
(
1981
).
20.
A.
Bondeson
,
G.
Marklin
,
G.
An
,
H. H.
Chen
, and
Y.
Lee
, “
Tilting instability of a cylindrical spheromak
,”
Phys. Fluids
24
,
1682
(
1981
).
21.
J. M.
Finn
and
A.
Reiman
, “
Tilt and shift mode stability in spheromaks with line tying
,”
Phys. Fluids
25
,
116
(
1982
).
22.
E. B.
Hooper
,
C. A.
Romero-Talamás
,
L. L.
LoDestro
,
R. D.
Wood
, and
H. S.
McLean
, “
Aspect-ratio effects in the driven, flux-core spheromak
,”
Phys. Plasmas
16
,
052506
(
2009
).
23.
E. V.
Belova
,
S. C.
Jardin
,
H.
Ji
,
M.
Yamada
, and
R.
Kulsrud
, “
Numerical study of tilt stability of prolate field-reversed configurations
,”
Phys. Plasmas
7
,
4996
(
2000
).
24.
T.
Sato
and
T.
Hayashi
, “
Externally driven magnetic reconnection and a powerful magnetic energy converter
,”
Phys. Fluids
22
,
1189
(
1979
).
25.
J.
Yee
and
P. M.
Bellan
,
Phys. Plasmas
7
,
3625
(
2000
).
26.
C. E.
Myers
,
E. V.
Belova
,
M. R.
Brown
,
T.
Gray
,
C. D.
Cothran
, and
M. J.
Schaffer
, “
Three-dimensional magnetohydrodynamics simulations of counter-helicity spheromak mergin in the swarthmore spheromak experiment
,”
Phys. Plasmas
18
,
112512
(
2011
).
You do not currently have access to this content.