Covering the core and the edge region of a tokamak, respectively, the two gyrokinetic turbulence codes Gyrokinetic Electromagnetic Numerical Experiment (GENE) and X-point Gyrokinetic Code (XGC) have been successfully coupled by exchanging three-dimensional charge density data needed to solve the gyrokinetic Poisson equation over the entire spatial domain. Certain challenges for the coupling procedure arise from the fact that the two codes employ completely different numerical methods. This includes, in particular, the necessity to introduce mapping procedures for the transfer of data between the unstructured triangular mesh of XGC and the logically rectangular grid (in a combination of real and Fourier space) used by GENE. Constraints on the coupling scheme are also imposed by the use of different time integrators. First, coupled simulations are presented. We have considered collisionless ion temperature gradient turbulence, in both circular and fully shaped plasmas. Coupled simulations successfully reproduce both GENE and XGC reference results, confirming the validity of the code coupling approach toward a whole device model. Many lessons learned in the present context, in particular, the need for a coupling procedure as flexible as possible, should be valuable to our and other efforts to couple different kinds of codes in pursuit of a more comprehensive description of complex real-world systems and will drive our further developments of a whole device model for fusion plasmas.

1.
See http://wdmapp.pppl.gov for a description of the WDMApp project.
2.
F.
Jenko
,
W.
Dorland
,
M.
Kotschenreuther
, and
B. N.
Rogers
, “
Electron temperature gradient driven turbulence
,”
Phys. Plasmas
7
,
1904
1910
(
2000
).
3.
T.
Görler
,
X.
Lapillonne
,
S.
Brunner
,
T.
Dannert
,
F.
Jenko
,
F.
Merz
, and
D.
Told
, “
The global version of the gyrokinetic turbulence code {GENE}
,”
J. Comput. Phys.
230
,
7053
7071
(
2011
).
4.
S.
Ku
,
C. S.
Chang
, and
P. H.
Diamond
, “
Full-f gyrokinetic particle simulation of centrally heated global itg turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry
,”
Nucl. Fusion
49
,
115021
(
2009
).
5.
S.
Ku
,
C. S.
Chang
,
R.
Hager
,
J. M.
Kwon
, and
S. E.
Parker
, “
A new hybrid-lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
,”
J. Comput. Phys.
315
,
467
475
(
2016
).
6.
J.
Dominski
,
S.
Ku
,
C.-S.
Chang
,
J.
Choi
,
E.
Suchyta
,
S.
Parker
,
S.
Klasky
, and
A.
Bhattacharjee
, “
A tight-coupling scheme sharing minimum information across a spatial interface between gyrokinetic turbulence codes
,”
Phys. Plasmas
25
,
072308
(
2018
).
7.
W. F.
Godoy
,
N.
Podhorszki
,
R.
Wang
,
C.
Atkins
,
G.
Eisenhauer
,
J.
Gu
,
P.
Davis
,
J.
Choi
,
K.
Germaschewski
,
K.
Huck
,
A.
Huebl
,
M.
Kim
,
J.
Kress
,
T.
Kurc
,
Q.
Liu
,
J.
Logan
,
K.
Mehta
,
G.
Ostrouchov
,
M.
Parashar
,
F.
Poeschel
,
D.
Pugmire
,
E.
Suchyta
,
K.
Takahashi
,
N.
Thompson
,
S.
Tsutsumi
,
L.
Wan
,
M.
Wolf
,
K.
Wu
, and
S.
Klasky
, “
Adios 2: The adaptable input output system. A framework for high-performance data management
,”
SoftwareX
12
,
100561
(
2020
).
8.
E.
Suchyta
,
S.
Klasky
,
N.
Podhorszki
,
M.
Wolf
,
A.
Adesoji
,
C. S.
Chang
,
J.
Choi
,
P. E.
Davis
,
J.
Dominski
,
S.
Ethier
,
I.
Foster
,
K.
Germaschewski
,
B.
Geveci
,
K. A.
Huck
,
C.
Johnson
,
Q.
Liu
,
J.
Logan
,
K.
Mehta
,
G.
Merlo
,
S. V.
Moore
,
T.
Munson
,
M.
Parashar
,
D.
Pugmire
,
M. S.
Shephard
,
P.
Subedi
,
C. W.
Smith
,
L.
Wan
, and
S.
Zhang
, “
The exascale framework for high fidelity coupled simulations (effis): Enabling whole device modeling
,” (submitted).
9.
R.
van Loon
,
P.
Anderson
,
F.
van de Vosse
, and
S.
Sherwin
, “
Comparison of various fluid–structure interaction methods for deformable bodies
,”
Comput. Struct.
85
,
833
843
(
2007
).
10.
D.
Han
,
G.
Liu
, and
S.
Abdallah
, “
An eulerian-lagrangian-lagrangian method for solving fluid-structure interaction problems with bulk solids
,”
J. Comput. Phys.
405
,
109164
(
2020
).
11.
D.
Faghihi
,
V.
Carey
,
C.
Michoski
,
R.
Hager
,
S.
Janhunen
,
C.
Chang
, and
R.
Moser
, “
Moment preserving constrained resampling with applications to particle-in-cell methods
,”
J. Comput. Phys.
409
,
109317
(
2020
).
12.
A. J.
Brizard
and
T. S.
Hahm
, “
Foundations of nonlinear gyrokinetic theory
,”
Rev. Mod. Phys.
79
,
421
468
(
2007
).
13.
See http://genecode.org for a description of the GENE code.
14.
See http://hbps.pppl.gov for a description of the XGC code.
15.
W.
Lee
, “
Gyrokinetic particle simulation model
,”
J. Comput. Phys.
72
,
243
269
(
1987
).
16.
S.
Parker
,
C.
Kim
, and
Y.
Chen
,
Phys. Plasmas
6
,
1709
(
1999
).
17.
G.
Merlo
,
J.
Dominski
,
A.
Bhattacharjee
,
C. S.
Chang
,
F.
Jenko
,
S.
Ku
,
E.
Lanti
, and
S.
Parker
, “
Cross-verification of the global gyrokinetic codes gene and xgc
,”
Phys. Plasmas
25
,
062308
(
2018
).
18.
H.
Doerk
and
F.
Jenko
, “
Towards optimal explicit time-stepping schemes for the gyrokinetic equations
,”
Comput. Phys. Commun.
185
,
1938
1946
(
2014
).
19.
H.
Lütjens
,
A.
Bondeson
, and
O.
Sauter
,
Comput. Phys. Commun.
97
,
219
260
(
1996
).
20.
A.
Burckel
,
O.
Sauter
,
C.
Angioni
,
J.
Candy
,
E.
Fable
, and
X.
Lapillonne
,
J. Phys.: Conf. Ser.
260
,
012006
(
2010
).
21.
G.
Hu
and
J. A.
Krommes
, “
Generalized weighting scheme for δf particle–simulation method
,”
Phys. Plasmas
1
,
863
874
(
1994
).
22.
S.
Ku
,
C. S.
Chang
,
R.
Hager
,
R. M.
Churchill
,
G. R.
Tynan
,
I.
Cziegler
,
M.
Greenwald
,
J.
Hughes
,
S. E.
Parker
,
M. F.
Adams
,
E.
D'Azevedo
, and
P.
Worley
, “
A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code xgc1
,”
Phys. Plasmas
25
,
056107
(
2018
).
23.
J.
Dominski
,
J.
Cheng
,
G.
Merlo
,
V.
Carey
,
J.
Choi
,
R.
Hager
,
S.
Ku
,
A.
Mollen
,
N.
Podhorszki
,
D.
Pugmire
,
L.
Ricketson
,
E.
Suchyta
,
P.
Trivedi
,
R.
Wang
,
C.
Chang
,
J.
Hittinger
,
F.
Jenko
,
S.
Klasky
,
S.
Parker
, and
A.
Bhattacharjee
, “
Spatial coupling of gyrokinetic simulations, a generalized scheme based on first-principles
,” Phys. Plasmas (submitted).
24.
J.
Cheng
,
J.
Dominski
,
Y.
Chen
,
H.
Chen
,
G.
Merlo
,
S.-H.
Ku
,
R.
Hager
,
C.
Chang
,
E.
Suchyta
,
E.
D'Azevedo
,
S.
Ethier
,
S.
Sreepathi
,
S.
Klasky
,
F.
Jenko
,
A.
Bhattacharjee
, and
S.
Parker
, “
Spatial core-edge coupling of the pic gyrokinetic codes gem and xgc
,”
Phys. Plasmas
27
,
122510
(
2020
).
25.
See https://github.com/PrincetonUniversity/WDMApp for obtaining a release of the coupled codes.
You do not currently have access to this content.