Two schemes for coupling gyrokinetic simulations of microturbulence in tokamaks are proposed. The first scheme is based on an additive Schwarz domain decomposition. We show that, because the goal of turbulence is long-time averages of the dynamics rather than temporal accuracy, the iteration to self-consistency across domains, which is typically required by Schwarz schemes, can be avoided, thereby accelerating the computation. Second, we propose a coupling scheme that relies entirely on the addition of source terms, leaving the boundary conditions arbitrary. The practical motivations for such a scheme are discussed, and forms of the source terms that ensure consistency and stability are derived. The schemes are tested on a nonlinear, one-dimensional model problem, and the first scheme is further tested on the Hasegawa–Wakatani model.

1.
O.
Meneghini
,
S. P.
Smith
,
L. L.
Lao
,
O.
Izacard
,
Q.
Ren
,
J. M.
Park
,
J.
Candy
,
Z.
Wang
,
C. J.
Luna
,
V. A.
Izzo
 et al., “
Integrated modeling applications for tokamak experiments with omfit
,”
Nucl. Fusion
55
(
8
),
083008
(
2015
).
2.
S.
Yamoto
,
K.
Hoshino
,
Y.
Homma
,
T.
Nakano
, and
N.
Hayashi
, “
Simulation study of mixed-impurity seeding with extension of integrated divertor code sonic
,”
Plasma Phys. Controlled Fusion
62
(
4
),
045006
(
2020
).
3.
F.
Hitzler
,
M.
Wischmeier
,
F.
Reimold
, and
D. P.
Coster
, “
Impurity transport and divertor retention in Ar and N seeded solps 5.0 simulations for asdex upgrade
,”
Plasma Phys. Controlled Fusion
62
,
085013
(
2020
).
4.
J.
Candy
and
R. E.
Waltz
, “
An eulerian gyrokinetic-maxwell solver
,”
J. Comput. Phys.
186
(
2
),
545
581
(
2003
).
5.
T.
Goerler
,
X.
Lapillonne
,
S.
Brunner
,
T.
Dannert
,
F.
Jenko
,
F.
Merz
, and
D.
Told
, “
The global version of the gyrokinetic turbulence code gene
,”
J. Comput. Phys.
230
(
18
),
7053
7071
(
2011
).
6.
W.
Dorland
,
F.
Jenko
,
M.
Kotschenreuther
, and
B. N.
Rogers
, “
Electron temperature gradient turbulence
,”
Phys. Rev. Lett.
85
(
26
),
5579
(
2000
).
7.
Y.
Chen
and
S. E.
Parker
, “
Electromagnetic gyrokinetic δf particle-in-cell turbulence simulation with realistic equilibrium profiles and geometry
,”
J. Comput. Phys.
220
(
2
),
839
855
(
2007
).
8.
R.
Hager
,
C. S.
Chang
,
N. M.
Ferraro
, and
R.
Nazikian
, “
Gyrokinetic understanding of the edge pedestal transport driven by resonant magnetic perturbations in a realistic divertor geometry
,”
Phys. Plasmas
27
(
6
),
062301
(
2020
).
9.
M.
Dorf
and
M.
Dorr
, “
Progress with the 5d full-f continuum gyrokinetic code cogent
,”
Contrib. Plasma Phys.
60
,
e201900113
(
2020
).
10.
A. H.
Hakim
,
N. R.
Mandell
,
T. N.
Bernard
,
M.
Francisquez
,
G. W.
Hammett
, and
E. L.
Shi
, “
Continuum electromagnetic gyrokinetic simulations of turbulence in the tokamak scrape-off layer and laboratory devices
,”
Phys. Plasmas
27
,
042304
042312
(
2020
).
11.
D. L.
De Zeeuw
,
S.
Sazykin
,
R. A.
Wolf
,
T. I.
Gombosi
,
A. J.
Ridley
, and
G.
Tóth
, “
Coupling of a global MHD code and an inner magnetospheric model: Initial results
,”
J. Geophys. Res.
109
(
A12
),
A12219
, (
2004
).
12.
M.
Nikbay
,
L.
Öncü
, and
A.
Aysan
, “
Multidisciplinary code coupling for analysis and optimization of aeroelastic systems
,”
J. Aircr.
46
(
6
),
1938
1944
(
2009
).
13.
M.
Zhao
,
A.
Chankin
, and
D.
Coster
, “
An iterative algorithm of coupling the kinetic code for plasma periphery (KIPP) with SOLPS
,”
Comput. Phys. Commun.
235
,
133
152
(
2019
).
14.
S. J.
Zhou
, “
Coupling climate models with the earth system modeling framework and the common component architecture
,”
Concurrency Comput.
18
(
2
),
203
213
(
2006
).
15.
T. F.
Chan
and
T. P.
Mathew
, “
Domain decomposition algorithms
,”
Acta Numer.
3
,
61
143
(
1994
).
16.
C. N.
Dawson
and
Q.
Du
, “
A domain decomposition method for parabolic equations based on finite elements
,” in
Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations
, edited by
R.
Glowinski
,
Y. A.
Kuznetsov
,
G. A.
Meurant
,
J.
Périaux
, and
O.
Widlund
(
SIAM
,
Philadelphia
,
1991
), pp.
255
263
.
17.
C. N.
Dawson
,
Q.
Du
, and
T. F.
Dupont
, “
A finite difference domain decomposition algorithm for numerical solution of the heat equation
,”
Math. Comput.
57
(
195
),
63
71
(
1991
).
18.
C. N.
Dawson
and
T. F.
Dupont
, “
Explicit/implicit conservative galerkin domain decomposition procedures for parabolic problems
,”
Math. Comput.
58
(
197
),
21
34
(
1992
).
19.
R.
Hongxing
and
Y.
Danping
, “
Schwarz type domain decomposition algorithms for parabolic equations and error estimates
,”
Acta Math. Appl. Sin.
14
(
3
),
300
313
(
1998
).
20.
R.
Pawlowski
,
R.
Bartlett
,
N.
Belcourt
,
R.
Hooper
, and
R.
Schmidt
, “
A theory manual for multiphysics code coupling in lime version 1.0
,”
Report No. SAND2011-2195
(
Sandia National Laboratories
,
2011
).
21.
L.
Chacón
and
G.
Chen
, “
A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions
,”
J. Comput. Phys.
316
,
578
597
(
2016
).
22.
G.
Chen
,
L.
Chacón
, and
D. C.
Barnes
, “
An energy-and charge-conserving, implicit, electrostatic particle-in-cell algorithm
,”
J. Comput. Phys.
230
(
18
),
7018
7036
(
2011
).
23.
D.
Ghosh
,
M. A.
Dorf
,
M. R.
Dorr
, and
J. A. F.
Hittinger
, “
Kinetic simulation of collisional magnetized plasmas with semi-implicit time integration
,”
J. Sci. Comput.
77
(
2
),
819
849
(
2018
).
24.
L. F.
Ricketson
and
L.
Chacón
, “
An energy-conserving and asymptotic-preserving charged-particle orbit implicit time integrator for arbitrary electromagnetic fields
,”
J. Comput. Phys.
418
,
109639
(
2020
).
25.
B. J.
Sturdevant
,
S. E.
Parker
,
Y.
Chen
, and
B. B.
Hause
, “
An implicit δf particle-in-cell method with sub-cycling and orbit averaging for Lorentz ions
,”
J. Comput. Phys.
316
,
519
533
(
2016
).
26.
B. J.
Sturdevant
,
S.-H.
Ku
,
C. S.
Chang
,
R.
Hager
,
L.
Chacon
, and
G.
Chen
, “
A fully implicit particle-in-cell method for gyrokinetic electromagnetic modes in XGC
,” in
APS Division of Plasma Physics Meeting
(
2019
).
27.
D. E.
Keyes
,
L. C.
McInnes
,
C.
Woodward
,
W.
Gropp
,
E.
Myra
,
M.
Pernice
,
J.
Bell
,
J.
Brown
,
A.
Clo
,
J.
Connors
 et al., “
Multiphysics simulations: Challenges and opportunities
,”
Int. J. High Performance Comput. Appl.
27
(
1
),
4
83
(
2013
).
28.
L. C.
Evans
,
Partial Differential Equations
(
American Mathematical Society
,
1998
).
29.
C. W.
Gear
and
D. R.
Wells
, “
Multirate linear multistep methods
,”
BIT Numer. Math.
24
(
4
),
484
502
(
1984
).
30.
M.
Günther
and
A.
Sandu
, “
Multirate generalized additive Runge Kutta methods
,”
Numer. Math.
133
(
3
),
497
524
(
2016
).
31.
A.
Hasegawa
and
M.
Wakatani
, “
Self-organization of electrostatic turbulence in a cylindrical plasma
,”
Phys. Rev. Lett.
59
(
14
),
1581
(
1987
).
32.
M.
Wakatani
and
A.
Hasegawa
, “
A collisional drift wave description of plasma edge turbulence
,”
Phys. Fluids
27
(
3
),
611
618
(
1984
).
You do not currently have access to this content.