The effects of self-generated magnetic fields on the ablative Rayleigh–Taylor (RT) instability are investigated in the linear regime. The main governing parameters are the Froude number (Fr), which stands for the ratio between ablative convection and acceleration of the target, and the Mach number at the ablation front (Ma), assumed to be small (isobaricity). During the development of the RT instability, magnetic fields are generated due to misalignment between pressure and density gradients (Biermann-battery effect). They accumulate at the section of the ablation front where the Nernst and the plasma velocities cancel each other. The magnetic field modifies the dynamics of the instability through the Righi–Leduc term, which acts as a heat source in the energy equation. It is found that the B fields affect perturbations with short wavelengths up to the most unstable wave in the spectrum. The B field plays a destabilizing role for moderate Froude numbers and becomes stabilizing for large Froude numbers. For plastic ablators, the Fr threshold is found to be Fr=5.

1.
S.
Atzeni
and
J.
Meyer-ter-Vehn
,
The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter
, International Series of Monographs on Physics, Vol.
125
, 1st ed. (
Oxford University Press
,
Oxford
,
2004
).
2.
R.
Betti
and
O. A.
Hurricane
,
Nat. Phys.
12
,
435
(
2016
).
3.
S. E.
Bodner
,
Phys. Rev. Lett.
33
,
761
(
1974
).
4.
H. J.
Kull
,
Phys. Fluids B
1
,
170
(
1989
).
5.
H.
Takabe
,
K.
Mima
,
L.
Montierth
, and
R. L.
Morse
,
Phys. Fluids
28
,
3676
(
1985
).
6.
Y.
Zhou
,
Phys. Rep.
720–722
,
1
136
(
2017
).
7.
Y.
Zhou
,
Phys. Rep.
723–725
,
1
160
(
2017
).
10.
V. N.
Goncharov
,
R.
Betti
,
R. L.
McCrory
,
P.
Sorotokin
, and
C. P.
Verdon
,
Phys. Plasmas
3
,
1402
(
1996
).
11.
A. R.
Piriz
,
J.
Sanz
, and
L. F.
Ibañez
,
Phys. Plasmas
4
,
1117
(
1997
).
12.
R.
Betti
,
V.
Goncharov
,
R. L.
McCrory
,
E.
Turano
, and
C. P.
Verdon
,
Phys. Rev. E
50
,
3968
(
1994
).
13.
V. N.
Goncharov
,
R.
Betti
,
R. L.
McCrory
, and
C. P.
Verdon
,
Phys. Plasmas
3
,
4665
(
1996
).
14.
K.
Mima
,
T.
Tajima
, and
J. N.
Leboeuf
,
Phys. Rev. Lett.
41
,
1715
(
1978
).
15.
B.
Srinivasan
and
X.-Z.
Tang
,
Phys. Plasmas
19
,
082703
(
2012
).
16.
B.
Srinivasan
,
G.
Dimonte
, and
X.-Z.
Tang
,
Phys. Rev. Lett.
108
,
165002
(
2012
).
17.
L.
Gao
,
P. M.
Nilson
,
I. V.
Igumenshchev
,
S. X.
Hu
,
J. R.
Davies
,
C.
Stoeckl
,
M. G.
Haines
,
D. H.
Froula
,
R.
Betti
, and
D. D.
Meyerhofer
,
Phys. Rev. Lett.
109
,
115001
(
2012
).
18.
L.
Gao
,
P. M.
Nilson
,
I. V.
Igumenshchev
,
G.
Fiksel
,
R.
Yan
,
J. R.
Davies
,
D.
Martinez
,
V.
Smalyuk
,
M. G.
Haines
,
E. G.
Blackman
,
D. H.
Froula
,
R.
Betti
, and
D. D.
Meyerhofer
,
Phys. Rev. Lett.
110
,
185003
(
2013
).
19.
I. V.
Igumenshchev
,
A. B.
Zylstra
,
C. K.
Li
,
P. M.
Nilson
,
V. N.
Goncharov
, and
R. D.
Petrasso
,
Phys. Plasmas
21
,
062707
(
2014
).
20.
S. I.
Braginskii
, in
Reviews of Plasma Physics
, edited by
M. A.
Leontovich
(
Consultants Bureau
,
New York
,
1965
), Vol.
1
, p.
205
.
21.
A.
Nishiguchi
,
Jpn. J. Appl. Phys., Part 1
41
,
326
(
2002
).
22.
C. A.
Walsh
,
J. P.
Chittenden
,
K.
McGlinchey
,
N. P. L.
Niasse
, and
B. D.
Appelbe
,
Phys. Rev. Lett.
118
,
155001
(
2017
).
23.
F.
García-Rubio
,
R.
Betti
,
J.
Sanz
, and
H.
Aluie
,
Phys. Plasmas
27
,
112715
(
2020
).
24.
W.
Wasow
,
Asymptotic Expansions for Ordinary Differential Equations
(
Dover Publications
,
New York
,
1987
).
25.
C.
Yañez
,
J.
Sanz
,
M.
Olazabal-Loumé
, and
L. F.
Ibañez
,
Phys. Plasmas
18
,
052701
(
2011
).
26.
A. L.
Velikovich
,
J. L.
Giuliani
, and
S. T.
Zalesak
,
Phys. Plasmas
26
,
112702
(
2019
).
27.
J.
Kevorkian
and
J. D.
Cole
,
Perturbation Methods in Applied Mathematics
, Applied Mathematical Sciences, Vol.
34
, edited by
F.
John
,
J. E.
Marsden
, and
L.
Sirovich
(
Springer-Verlag
,
Berlin
,
1981
).
You do not currently have access to this content.