Magnetic reconnection in quasi-parallel shocks, relevant to the Earth's bow shock, is studied by means of two-dimensional full particle-in-cell simulations. As the Alfvénic Mach number increases, the propagation direction of the waves excited in the transition region changes, and the shock becomes more turbulent with more reconnection sites. In the higher Mach number shock, abundant electron-only reconnection sites are generated with scales on the order of the ion skin depth or less. Non-reconnecting current sheets can also generate electron jets and energy dissipation can occur there as well. However, non-reconnecting current sheets with the magnetic field reversal typically show a smaller energy dissipation rate than reconnecting current sheets. In the shock transition region, two types of waves are responsible for driving reconnection: one has a wavelength around three ion skin depths (di), and the other has a wavelength less than 1 di. Electron and ion distribution functions show that in regions where the former type of waves is excited, there are two ion beams and a single-peaked electron distribution. In contrast, in regions where the latter type of waves is excited, there are multiple electron and ion beams. The waves propagating obliquely to the magnetic field bend the magnetic field lines, and magnetic reconnection occurs where oppositely directed field lines come into contact.

1.
A.
Retinò
,
D.
Sundkvist
,
A.
Vaivads
,
F.
Mozer
,
M.
André
, and
C. J.
Owen
, “
In situ evidence of magnetic reconnection in turbulent plasma
,”
Nat. Phys.
3
,
235
(
2007
).
2.
D.
Sundkvist
,
A.
Retinò
,
A.
Vaivads
, and
S. D.
Bale
, “
Dissipation in turbulent plasma due to reconnection in thin current sheets
,”
Phys. Rev. Lett.
99
,
025004
(
2007
).
3.
T. D.
Phan
,
G.
Paschmann
,
C.
Twitty
,
F. S.
Mozer
,
J. T.
Gosling
,
J. P.
Eastwood
,
M.
Øieroset
,
H.
Rème
, and
E. A.
Lucek
, “
Evidence for magnetic reconnection initiated in the magnetosheath
,”
Geophys. Res. Lett.
34
,
L14104
, (
2007
).
4.
E.
Yordanova
,
Z.
Vörös
,
A.
Varsani
,
D. B.
Graham
,
C.
Norgren
,
Y. V.
Khotyaintsev
,
A.
Vaivads
,
E.
Eriksson
,
R.
Nakamura
,
P.-A.
Lindqvist
,
G.
Marklund
,
R. E.
Ergun
,
W.
Magnes
,
W.
Baumjohann
,
D.
Fischer
,
F.
Plaschke
,
Y.
Narita
,
C. T.
Russell
,
R. J.
Strangeway
,
O. L.
Contel
,
C.
Pollock
,
R. B.
Torbert
,
B. J.
Giles
,
J. L.
Burch
,
L. A.
Avanov
,
J. C.
Dorelli
,
D. J.
Gershman
,
W. R.
Paterson
,
B.
Lavraud
, and
Y.
Saito
, “
Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath
,”
Geophys. Res. Lett.
43
,
5969
, (
2016
).
5.
Z.
Vörös
,
E.
Yordanova
,
A.
Varsani
,
K. J.
Genestreti
,
Y. V.
Khotyaintsev
,
W.
Li
,
D. B.
Graham
,
C.
Norgren
,
R.
Nakamura
,
Y.
Narita
,
F.
Plaschke
,
W.
Magnes
,
W.
Baumjohann
,
D.
Fischer
,
A.
Vaivads
,
E.
Eriksson
,
P.-A.
Lindqvist
,
G.
Marklund
,
R. E.
Ergun
,
M.
Leitner
,
M. P.
Leubner
,
R. J.
Strangeway
,
O. L.
Contel
,
C.
Pollock
,
B. J.
Giles
,
R. B.
Torbert
,
J. L.
Burch
,
L. A.
Avanov
,
J. C.
Dorelli
,
D. J.
Gershman
,
W. R.
Paterson
,
B.
Lavraud
, and
Y.
Saito
, “
MMS observation of magnetic reconnection in the turbulent magnetosheath
,”
J. Geophys. Res.
112
,
11442
(
2017
).
6.
A.
Chasapis
,
W. H.
Matthaeus
,
T. N.
Parashar
,
O.
LeContel
,
A.
Retinò
,
H.
Breuillard
,
Y.
Khotyaintsev
,
A.
Vaivads
,
B.
Lavraud
,
E.
Eriksson
,
T. E.
Moore
,
J. L.
Burch
,
R. B.
Torbert
,
P.-A.
Lindqvist
,
R. E.
Ergun
,
G.
Marklund
,
K. A.
Goodrich
,
F. D.
Wilder
,
M.
Chutter
,
J.
Needell
,
D.
Rau
,
I.
Dors
,
C. T.
Russell
,
G.
Le
,
W.
Magnes
,
R. J.
Strangeway
,
K. R.
Bromund
,
H. K.
Leinweber
,
F.
Plaschke
,
D.
Fischer
,
B. J.
Anderson
,
C. J.
Pollock
,
B. L.
Giles
,
W. R.
Paterson
,
J.
Dorelli
,
D. J.
Gershman
,
L.
Avanov
, and
Y.
Saito
, “
Electron heating at kinetic scales in magnetosheath turbulence
,”
Astrophys. J.
836
,
247
(
2017
).
7.
T. D.
Phan
,
J. P.
Eastwood
,
M. A.
Shay
,
J. F.
Drake
,
B. U. Ö.
Sonnerup
,
M.
Fujimoto
,
P. A.
Cassak
,
M.
Øieroset
,
J. L.
Burch
,
R. B.
Torbert
,
A. C.
Rager
,
J. C.
Dorelli
,
D. J.
Gershman
,
C.
Pollock
,
P. S.
Pyakurel
,
C. C.
Haggerty
,
Y.
Khotyaintsev
,
B.
Lavraud
,
Y.
Saito
,
M.
Oka
,
R. E.
Ergun
,
A.
Retino
,
O. L.
Contel
,
M. R.
Argall
,
B. L.
Giles
,
T. E.
Moore
,
F. D.
Wilder
,
R. J.
Strangeway
,
C. T.
Russell
,
P. A.
Lindqvist
, and
W.
Magnes
, “
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath
,”
Nature
557
,
202
(
2018
).
8.
F. D.
Wilder
,
R. E.
Ergun
,
J. L.
Burch
,
N.
Ahmadi
,
S.
Eriksson
,
T. D.
Phan
,
K. A.
Goodrich
,
J.
Shuster
,
A. C.
Rager
,
R. B.
Torbert
,
B. L.
Giles
,
R. J.
Strangeway
,
F.
Plaschke
,
W.
Magnes
,
P. A.
Lindqvist
, and
Y. V.
Khotyaintsev
, “
The role of the parallel electric field in electron-scale dissipation at reconnecting currents in the magnetosheath
,”
J. Geophys. Res.
123
,
6533
, (
2018
).
9.
S.
Wang
,
L.-J.
Chen
,
N.
Bessho
,
M.
Hesse
,
L. B.
Wilson
 III
,
B.
Giles
,
T. E.
Moore
,
C. T.
Russell
,
R. B.
Torbert
, and
J. L.
Burch
, “
Observational evidence of magnetic reconnection in the terrestrial bow shock transition region
,”
Geophys. Res. Lett.
46
,
562
, (
2019
).
10.
I.
Gingell
,
S. J.
Schwartz
,
J. P.
Eastwood
,
J. L.
Burch
,
R. E.
Ergun
,
S.
Fuselier
,
D. J.
Gershman
,
B. L.
Giles
,
Y. V.
Khotyaintsev
,
B.
Lavraud
,
P.-A.
Lindqvist
,
W. R.
Paterson
,
T. D.
Phan
,
C. T.
Russell
,
J. E.
Stawarz
,
R. J.
Strangeway
,
R. B.
Torbert
, and
F.
Wilder
, “
Observations of magnetic reconnection in the transition region of quasi-parallel shocks
,”
Geophys. Rev. Lett.
46
,
1177
(
2019
).
11.
Z. Z.
Chen
,
H. S.
Fu
,
Z.
Wang
,
C. M.
Liu
, and
Y.
Xu
, “
Evidence of magnetic nulls in the reconnection at bow shock
,”
Geophys. Res. Lett.
46
,
10209
, (
2019
).
12.
I.
Gingell
,
S. J.
Schwartz
,
J. P.
Eastwood
,
J. E.
Stawarz
,
J. L.
Burch
,
R. E.
Ergun
,
S. A.
Fuselier
,
D. J.
Gershman
,
B. L.
Giles
,
Y. V.
Khotyaintsev
,
B.
Lavraud
,
P.-A.
Lindqvist
,
W. R.
Paterson
,
T. D.
Phan
,
C. T.
Russell
,
R. J.
Strangeway
,
R. B.
Torbert
, and
F.
Wilder
, “
Statistics of reconnecting current sheets in the transition region of Earth's bow shock
,”
J. Geophys. Res.
125
,
e2019JA027119
(
2020
).
13.
H.
Karimabadi
,
V.
Roytershteyn
,
H. X.
Vu
,
Y. A.
Omelchenko
,
J.
Scudder
,
W.
Daughton
,
A.
Dimmock
,
K.
Nykyri
,
M.
Wan
,
D.
Sibeck
,
M.
Tatineni
,
A.
Majumdar
,
B.
Loring
, and
B.
Geveci
, “
The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas
,”
Phys. Plasmas
21
,
062308
(
2014
).
14.
I.
Gingell
,
S. J.
Schwartz
,
D.
Burgess
,
A.
Johlander
,
C. T.
Russell
,
J. L.
Burch
,
R. E.
Ergun
,
S.
Fuselier
,
D. J.
Gershman
,
B. L.
Giles
,
K. A.
Goodrich
,
Y. V.
Khotyaintsev
,
B.
Lavraud
,
P.-A.
Lindqvist
,
R. J.
Strangeway
,
K.
Trattner
,
R. B.
Torbert
,
H.
Wei
, and
F.
Wilder
, “
MMS observations and hybrid simulations of surface ripples at a marginally quasi-parallel shock
,”
J. Geophys. Res. Space Phys.
122
,
11003
, (
2017
).
15.
Y.
Matsumoto
,
T.
Amano
,
T. N.
Kato
, and
M.
Hoshino
, “
Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave
,”
Science
347
,
974
(
2015
).
16.
A.
Bohdan
,
J.
Niemiec
,
O.
Kobzar
, and
M.
Pohl
, “
Electron pre-acceleration at nonrelativistic high-Mach-number perpendicular shocks
,”
Astrophys. J.
847
,
71
(
2017
).
17.
N.
Bessho
,
L.-J.
Chen
,
S.
Wang
,
M.
Hesse
, and
L. B.
Wilson
 III
, “
Magnetic reconnection in a quasi-parallel shock: Two-dimensional local particle-in-cell simulation
,”
Geophys. Res. Lett.
46
,
9352
, (
2019
).
18.
S. P.
Gary
, “
Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review
,”
Space Sci. Rev.
56
,
373
(
1991
).
19.
P.
Hellinger
and
A.
Mangeney
, “
Electromagnetic ion beam instabilities: Oblique pulsations
,”
J. Geophys. Res.
104
,
4669
, (
1999
).
20.
J. R.
Kan
and
D. W.
Swift
, “
Structure of the quasi-parallel bow shock: Results of numerical simulations
,”
J. Geophys. Res.
88
,
6919
, (
1983
).
21.
D.
Winske
and
K. B.
Quest
, “
Electromagnetic ion beam instabilities: Comparison of one- and two-dimensional simulations
,”
J. Geophys. Res.
91
,
8789
, (
1986
).
22.
K. B.
Quest
, “
Theory and simulation of collisionless parallel shocks
,”
J. Geophys. Res.
93
,
9649
, (
1988
).
23.
J. R.
Kan
,
M. E.
Mandt
, and
L. H.
Lyu
, “
Quasi-parallel collisionless shocks
,”
Space Sci. Rev.
57
,
201
(
1991
).
24.
M.
Scholer
, “
Upstream waves, shocklets, short large-amplitude magnetic structures and the cyclic behavior of oblique quasi-parallel collisionless shocks
,”
J. Geophys. Res.
98
,
47
, (
1993
).
25.
M.
Scholer
,
M.
Fujimoto
, and
H.
Kucharek
, “
Two-dimensional simulations of supercritical quasi-parallel shocks: Upstream waves, downstream waves, and shock re-formation
,”
J. Geophys. Res.
98
,
18971
, (
1993
).
26.
D.
Krauss-Varban
, “
Waves associated with quasi-parallel shocks: Generation, mode conversion and implications
,”
Adv. Space Res.
15
,
271
(
1995
).
27.
K.
Tsubouchi
and
B.
Lembège
, “
Full particle simulations of short large-amplitude magnetic structures (SLAMS) in quasi-parallel shocks
,”
J. Geophys. Res.
109
,
A02114
, (
2004
).
28.
M. S.
Weidl
,
D.
Winske
, and
C.
Niemann
, “
Three regimes and four modes for the resonant saturation of parallel ion-beam instabilities
,”
Astrophys. J.
873
,
57
(
2019
).
29.
L. B.
Wilson
 III
, “
Low frequency waves at and upstream of collisionless shocks
,” in
Low-Frequency Waves in Space Plasmas
, Geophysical Monograph Series, edited by
A.
Keiling
,
D.-H.
Lee
, and
V.
Nakariakov
(
American Geophysical Union
,
Washington, DC
,
2016
), Vol.
216
, pp.
269
291
.
30.
P. V.
Heuer
,
M. S.
Weidl
,
R. S.
Dorst
,
D. B.
Schaeffer
,
S. K. P.
Tripathi
,
S.
Vincena
,
C. G.
Constantin
,
C.
Niemann
,
L. B.
Wilson
 III
, and
D.
Winske
, “
Laboratory observations of ultra-low-frequency analog waves driven by the righthand resonant ion beam instability
,”
Astrophys. J.
891
,
L11
(
2020
).
31.
S. J.
Schwartz
,
D.
Burges
,
W. P.
Wilkinson
,
R. L.
Kessel
,
M.
Dunlop
, and
H.
Lühr
, “
Observations of short large-amplitude magnetic structures at a quasi-parallel shock
,”
J. Geophys. Res.
97
,
4209
, (
1992
).
32.
M.
Scholer
,
H.
Kucharek
, and
I.
Shinohara
, “
Short large-amplitude magnetic structures and whistler wave precursors in a full-particle quasi-parallel shock simulation
,”
J. Geophys. Res.
108
,
1273
, (
2003
).
33.
T.
Umeda
,
Y.
Omura
, and
H.
Matsumoto
, “
An improved masking method for absorbing boundaries in electromagnetic particle simulations
,”
Comput. Phys. Commun.
137
,
286
(
2001
).
34.
M. E.
Mandt
,
R. E.
Denton
, and
J. F.
Drake
, “
Transition to whistler mediated magnetic reconnection
,”
Geophys. Res. Lett.
21
,
73
, (
1994
).
35.
P.
Sharma Pyakurel
,
M. A.
Shay
,
T. D.
Phan
,
W. H.
Matthaeus
,
J. F.
Drake
,
J. M.
TenBarge
,
C. C.
Haggerty
,
K. G.
Klein
,
P. A.
Cassak
,
T. N.
Parashar
,
M.
Swisdak
, and
A.
Chasapis
, “
Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence
,”
Phys. Plasmas
26
,
082307
(
2019
).
36.
A.
Mallet
, “
The onset of electron-only reconnection
,”
J. Plasma Phys.
86
,
905860301
(
2020
).
37.
P. A.
Cassak
and
M. A.
Shay
, “
Scaling of asymmetric magnetic reconnection: General theory and collisional simulations
,”
Phys. Plasmas
14
(
10
),
102114
(
2007
).
38.
X.
Blanco-Cano
,
G.
Le
, and
C. T.
Russell
, “
Identification of foreshock waves with 3-s periods
,”
J. Geophys. Res.
104
,
4643
, (
1999
).
39.
J. P.
Eastwood
,
A.
Balogh
,
E. A.
Lucek
,
C.
Mazelle
, and
I.
Dandouras
, “
On the existence of Alfvén waves in the terrestrial foreshock
,”
Ann. Geophys.
21
,
1457
(
2003
).
40.
Y.
Hobara
,
S. N.
Walker
,
M.
Balikhin
,
O. A.
Pokhotelov
,
M.
Dunlop
,
H.
Nilsson
, and
H.
Rème
, “
Characteristics of terrestrial foreshock ULF waves: Cluster observations
,”
J. Geophys. Res.
112
,
A07202
, (
2007
).
41.
H. K.
Wong
and
C. W.
Smith
, “
Electron beam excitation of upstream waves in the whistler mode frequency range
,”
J. Geophys. Res.
99
,
13373
, (
1994
).
42.
K.
Sauer
and
R. D.
Sydora
, “
Beam-excited whistler waves at oblique propagation with relation to STEREO radiation belt observations
,”
Ann. Geophys.
28
,
1317
(
2010
).
43.
S.
Matsukiyo
and
M.
Scholer
, “
On microinstabilities in the foot of high Mach number perpendicular shocks
,”
J. Geophys. Res.
111
,
A06104
, (
2006
).
44.
A. J.
Hull
,
L.
Muschietti
,
O.
Le Contel
,
J. C.
Dorelli
, and
P.-A.
Lindqvist
, “
MMS observations of intense whistler waves within Earth's supercritical bow shock: Source mechanism and impact on shock structure and plasma transport
,”
J. Geophys.
125
,
e2019JA027290
(
2020
).
45.
T.
Umeda
,
Y.
Kidani
,
S.
Matsukiyo
, and
R.
Yamazaki
, “
Modified two-stream instability at perpendicular collisionless shocks: Full particle simulations
,”
J. Geophys. Res.
117
,
A03206
, (
2012
).
46.
T.
Umeda
,
Y.
Kidani
,
S.
Matsukiyo
, and
R.
Yamazaki
, “
Microinstabilities at perpendicular collisionless shocks: A comparison of full particle simulations with different ion to electron mass ratio
,”
Phys. Plasmas
19
,
042109
(
2012
).
47.
H. S.
Fu
,
A.
Vaivads
,
Y. V.
Khotyaintsev
,
V.
Olshevsky
,
M.
André
,
J. B.
Cao
,
S. Y.
Huang
,
A.
Retinò
, and
G.
Lapenta
, “
How to find magnetic nulls and reconstruct field topology with MMS data?
,”
J. Geophys. Res.
120
,
3758
, (
2015
).
48.
R. B.
Torbert
,
I.
Dors
,
M. R.
Argall
,
K. J.
Genestreti
,
J. L.
Burch
,
C. J.
Farrugia
,
T. G.
Forbes
,
B. L.
Giles
, and
R. J.
Strangeway
, “
A new method of 3-D magnetic field reconstruction
,”
Geophys. Res. Lett.
47
,
e2019GL085542
, (
2020
).
49.
R. E.
Denton
,
R. B.
Torbert
,
H.
Hasegawa
,
I.
Dors
,
K. J.
Genestreti
,
M. R.
Argall
,
D.
Gershman
,
O. L.
Contel
,
J. L.
Burch
,
C. T.
Russell
,
R. J.
Strangeway
,
B. L.
Giles
, and
D.
Fischer
, “
Polynomial reconstruction of the reconnection magnetic field observed by multiple spacecraft
,”
J. Geophys. Res.
125
,
e2019JA027481
(
2020
).
You do not currently have access to this content.