The impact of electromagnetic effects on macroscopic dynamics of blobs in hot low-β (β<me/mi) edge plasma of fusion devices is analyzed. The physical model governing filament dynamics is presented. The qualitative analysis of the blob motion in electrostatic and electromagnetic regimes is performed. The scalings for the plasma potential and filament advection velocity are obtained along with the estimates of plasma parameters, for which the physics of Alfvén waves and skin effect can have an impact on the filament motion. It is shown that required edge/scrape-off layer conditions can be found in modern tokamaks. Analytical expressions for the distributions of the parallel current and electrostatic potential in a blob, containing electrostatic and electromagnetic contributions, are derived. It is demonstrated that in sufficiently hot, weakly resistive plasma the electromagnetic effects can lead to noticeable variations of the potential along the magnetic field lines distorting the blob propagation pattern in contrast to the electrostatic case. Results of the theoretical analysis are compared with results of 3D BOUT++ modeling, which show that in the electromagnetic limit, the macroscopic motion of blobs can exhibit ballooning features due to the emission of Alfvén waves, absent in electrostatic simulations. It is concluded that, at least in the near scrape-off layer region of fusion devices, electromagnetic models of plasma dynamics may be appropriate for the analysis of blob motion instead of electrostatic ones.

1.
D.
D'Ippolito
,
J.
Myra
, and
S.
Krasheninnikov
,
Phys. Plasmas
9
,
222
(
2002
).
2.
B. P.
Van Milligen
,
R.
Sánchez
,
B. A.
Carreras
,
V. E.
Lynch
,
B.
LaBombard
,
M.
Pedrosa
,
C.
Hidalgo
,
B.
Gonçalves
,
R.
Balbín
, and
W.-A.
Team
,
Phys. Plasmas
12
,
052507
(
2005
).
3.
S.
Krasheninnikov
,
D.
D'Ippolito
, and
J.
Myra
,
J. Plasma Phys.
74
,
679
(
2008
).
4.
D.
D'Ippolito
,
J.
Myra
, and
S.
Zweben
,
Phys. Plasmas
18
,
060501
(
2011
).
5.
D.
Carralero
,
E.
de la Cal
,
J.
de Pablos
,
A.
De Coninck
,
J.
Alonso
,
C.
Hidalgo
,
B. P.
van Milligen
, and
M.
Pedrosa
,
J. Nucl. Mater.
390–391
,
457
(
2009
).
6.
G.
Fuchert
,
G.
Birkenmeier
,
M.
Ramisch
, and
U.
Stroth
,
Plasma Phys. Controlled Fusion
58
,
054005
(
2016
).
7.
M.
Umansky
,
S.
Krasheninnikov
,
B.
LaBombard
, and
J.
Terry
,
Phys. Plasmas
5
,
3373
(
1998
).
8.
J. A.
Boedo
,
D. L.
Rudakov
,
R. A.
Moyer
,
G. R.
McKee
,
R. J.
Colchin
,
M. J.
Schaffer
,
P.
Stangeby
,
W.
West
,
S. L.
Allen
,
T. E.
Evans
 et al.,
Phys. Plasmas
10
,
1670
(
2003
).
9.
D.
Russell
,
D.
D'Ippolito
,
J.
Myra
,
W.
Nevins
, and
X.
Xu
,
Phys. Rev. Lett.
93
,
265001
(
2004
).
10.
D.
Jovanović
,
U.
de Angelis
,
R.
Fedele
, and
F.
Pegoraro
,
Phys. Plasmas
14
,
083704
(
2007
).
11.
I.
Furno
,
C.
Theiler
,
D.
Lançon
,
A.
Fasoli
,
D.
Iraji
,
P.
Ricci
,
M.
Spolaore
, and
N.
Vianello
,
Plasma Phys. Controlled Fusion
53
,
124016
(
2011
).
12.
N.
Walkden
,
B.
Dudson
, and
G.
Fishpool
,
Plasma Phys. Controlled Fusion
55
,
105005
(
2013
).
13.
A. H.
Nielsen
,
J. J.
Rasmussen
,
J.
Madsen
,
G.
Xu
,
V.
Naulin
,
J. M. B.
Olsen
,
M.
Løiten
,
S.
Hansen
,
N.
Yan
,
L.
Tophøj
 et al.,
Plasma Phys. Controlled Fusion
59
,
025012
(
2016
).
14.
P.
Tamain
,
H.
Bufferand
,
G.
Ciraolo
,
C.
Colin
,
D.
Galassi
,
P.
Ghendrih
,
F.
Schwander
, and
E.
Serre
,
J. Comput. Phys.
321
,
606
(
2016
).
15.
B.
Shanahan
,
B.
Dudson
, and
P.
Hill
,
Plasma Phys. Controlled Fusion
61
,
025007
(
2018
).
16.
A.
Ross
,
A.
Stegmeir
,
P.
Manz
,
D.
Groselj
,
W.
Zholobenko
,
D.
Coster
, and
F.
Jenko
,
Phys. Plasmas
26
,
102308
(
2019
).
17.
G.
Xu
,
V.
Naulin
,
W.
Fundamenski
,
J. J.
Rasmussen
,
A. H.
Nielsen
, and
B.
Wan
,
Phys. Plasmas
17
,
022501
(
2010
).
18.
A.
Stepanenko
,
W.
Lee
, and
S.
Krasheninnikov
,
Phys. Plasmas
24
,
012301
(
2017
).
19.
V.
Rozhansky
,
I.
Veselova
, and
S.
Voskoboynikov
,
Plasma Phys. Controlled Fusion
37
,
399
(
1995
).
20.
V.
Rozhansky
,
I.
Senichenkov
,
I.
Veselova
, and
R.
Schneider
,
Plasma Phys. Controlled Fusion
46
,
575
(
2004
).
21.
M.
Scholer
,
Planet. Space Sci.
18
,
977
(
1970
).
22.
P.
Parks
,
W.
Sessions
, and
L.
Baylor
,
Phys. Plasmas
7
,
1968
(
2000
).
23.
J.
Myra
,
Phys. Plasmas
14
,
102314
(
2007
).
24.
V.
Rozhansky
,
E.
Kaveeva
, and
M.
Tendler
,
Plasma Phys. Controlled Fusion
57
,
115007
(
2015
).
25.
D.
Ryutov
,
Phys. Plasmas
13
,
122307
(
2006
).
26.
J.
Myra
,
D.
Russell
, and
D.
D'Ippolito
,
Phys. Plasmas
13
,
112502
(
2006
).
27.
D.
Russell
,
J.
Myra
, and
D.
D'Ippolito
,
Phys. Plasmas
14
,
102307
(
2007
).
28.
J.
Myra
and
D.
D'Ippolito
,
Phys. Plasmas
12
,
092511
(
2005
).
29.
J.
Myra
,
D.
D'Ippolito
,
X.
Xu
, and
R.
Cohen
,
Phys. Plasmas
7
,
2290
(
2000
).
30.
S.
Krasheninnikov
,
D.
Ryutov
, and
G.
Yu
,
J. Plasma Fusion Res.
6
,
139
(
2004
).
31.
G.
Yu
,
S.
Krasheninnikov
, and
P.
Guzdar
,
Phys. Plasmas
13
,
042508
(
2006
).
32.
W.
Lee
,
J. R.
Angus
,
M. V.
Umansky
, and
S. I.
Krasheninnikov
,
J. Nucl. Mater.
463
,
765
(
2015
).
33.
W.
Lee
,
M. V.
Umansky
,
J.
Angus
, and
S. I.
Krasheninnikov
,
Phys. Plasmas
22
,
012505
(
2015
).
34.
P.
Manz
,
D.
Carralero
,
G.
Birkenmeier
,
H.
Müller
,
S.
Müller
,
G.
Fuchert
,
B.
Scott
, and
U.
Stroth
,
Phys. Plasmas
20
,
102307
(
2013
).
35.
B.
Scott
,
Plasma Phys. Controlled Fusion
39
,
1635
(
1997
).
36.
D.
Hoare
,
F.
Militello
,
J.
Omotani
,
F.
Riva
,
S.
Newton
,
T.
Nicholas
,
D.
Ryan
, and
N.
Walkden
,
Plasma Phys. Controlled Fusion
61
,
105013
(
2019
).
37.
J. R.
Angus
,
S. I.
Krasheninnikov
, and
M. V.
Umansky
,
Phys. Plasmas
19
,
082312
(
2012
).
38.
N.
Bisai
and
P.
Kaw
,
Phys. Plasmas
25
,
012503
(
2018
).
39.
J. R.
Angus
and
M. V.
Umansky
,
Phys. Plasmas
21
,
012514
(
2014
).
40.
A. N.
Simakov
and
P. J.
Catto
,
Phys. Plasmas
10
,
4744
(
2003
).
41.
X.
Xu
,
R.
Cohen
,
T.
Rognlien
, and
J.
Myra
,
Phys. Plasmas
7
,
1951
(
2000
).
42.
W. D.
D'haeseleer
,
W. N.
Hitchon
,
J. D.
Callen
, and
J. L.
Shohet
,
Flux Coordinates and Magnetic Field Structure: A Guide to a Fundamental Tool of Plasma Theory
(
Springer Science and Business Media
,
2012
).
43.
V.
Rozhansky
and
A.
Kirk
,
Plasma Phys. Controlled Fusion
50
,
025008
(
2008
).
44.
A.
Aydemir
,
Phys. Plasmas
12
,
062503
(
2005
).
45.
A.
Stepanenko
,
W.
Lee
, and
S.
Krasheninnikov
,
Nucl. Mater. Energy
12
,
887
(
2017
).
46.
J.
Myra
,
D.
D'ippolito
,
S.
Krasheninnikov
, and
G.
Yu
,
Phys. Plasmas
11
,
4267
(
2004
).
47.
R.
Kube
,
O. E.
Garcia
,
B.
LaBombard
,
J.
Terry
, and
S.
Zweben
,
J. Nucl. Mater.
438
,
S505
(
2013
).
48.
N. B.
Ayed
,
A.
Kirk
,
B.
Dudson
,
S.
Tallents
,
R.
Vann
,
H.
Wilson
, and
MAST Team,
Plasma Phys. Controlled Fusion
51
,
035016
(
2009
).
49.
O.
Grulke
,
J.
Terry
,
B.
LaBombard
, and
S.
Zweben
,
Phys. Plasmas
13
,
012306
(
2006
).
50.
S.
Zweben
,
R.
Maqueda
,
J.
Terry
,
T.
Munsat
,
J.
Myra
,
D.
D'Ippolito
,
D.
Russell
,
J.
Krommes
,
B.
LeBlanc
,
T.
Stoltzfus-Dueck
 et al.,
Phys. Plasmas
13
,
056114
(
2006
).
51.
B.
LaBombard
,
R.
Boivin
,
M.
Greenwald
,
J.
Hughes
,
B.
Lipschultz
,
D.
Mossessian
,
C.
Pitcher
,
J.
Terry
,
S.
Zweben
, and
A.
Group
,
Phys. Plasmas
8
,
2107
(
2001
).
52.
J.
Myra
,
D.
D'Ippolito
,
D.
Stotler
,
S.
Zweben
,
B.
LeBlanc
,
J.
Menard
,
R.
Maqueda
, and
J.
Boedo
,
Phys. Plasmas
13
,
092509
(
2006
).
53.
N.
Walkden
,
B.
Dudson
,
L.
Easy
,
G.
Fishpool
, and
J.
Omotani
,
Nucl. Fusion
55
,
113022
(
2015
).
54.
A.
Sveshnikov
,
A.
Bogolyubov
, and
V.
Kravtsov
,
Lectures on Mathematical Physics
(
MSU Publishing House
,
2004
) (in Russian).
55.
B.
Dudson
,
M.
Umansky
,
X.
Xu
,
P.
Snyder
, and
H.
Wilson
,
Comput. Phys. Commun.
180
,
1467
(
2009
).
56.
A. C.
Hindmarsh
,
P. N.
Brown
,
K. E.
Grant
,
S. L.
Lee
,
R.
Serban
,
D. E.
Shumaker
, and
C. S.
Woodward
,
ACM Trans. Math. Software (TOMS)
31
,
363
(
2005
).
57.
R.
Cohen
and
D.
Ryutov
,
Contrib. Plasma Phys.
46
,
678
(
2006
).
58.
A. A.
Stepanenko
, “
Cumulative impact of electromagnetic effects and inhomogeneous temperature distribution on dynamics of plasma filaments at the tokamak edge
,”
Plasma Phys. Rep.
(submitted) (
2020
).
You do not currently have access to this content.