In the present paper, we have studied the cylindrical/spherical ion acoustic waves in dusty plasma consisting of positive ions, immobile dust particles, and q nonextensive distributed cold and hot electrons. A multiple scale expansion method is employed to derive a modified Korteweg–de Vries (mKdV) equation. Exact analytical solution for the mKdV equation in nonplanar geometry is obtained using the weighted residual method. This solution is, then, plotted for different physical parameters relevant to Saturn's E ring through 2D figures. We show that the amplitude of the wave decreases faster as one departs away from the axis of the cylinder or the center of the sphere. Such a decaying behavior continues as time progresses. This is expected from the obtained solution where the cylindrical (spherical) amplitude component (τ/τ)m decreases as the time progresses. We have also studied the role of the nonadiabatic dust charging fluctuating dissipation process and analyzed the resulting damped mKdV equation. Furthermore, the parametric dependence of wave properties (amplitude and width) on the q nonextensive parameter, density, and temperature of cold and hot electrons, concentration of dust particles, and thermal effects of ions has been studied in detail, and findings obtained here will be beneficial to further astrophysical investigations.

1.
C. K.
Goertz
,
Rev. Geophys.
27
,
271
, (
1989
).
2.
D. A.
Mendis
and
M.
Rosenberg
,
Annu. Rev. Astron. Astrophys.
32
,
419
(
1994
).
3.
P. K.
Shukla
and
A. A.
Mamun
,
Introduction to Dusty Plasma Physics
(
Institute of Physics
,
Bristol
,
2002
).
4.
V.
Verheest
,
Planet. Space Sci.
40
(
1
),
1
6
(
1992
).
5.
P. K.
Shukla
and
V. P.
Silin
,
Phys. Scr.
45
,
508
(
1992
).
6.
A.
Barkan
,
N.
D'Angelo
, and
R. L.
Merlino
,
Planet. Space Sci.
44
,
239
(
1996
).
7.
Y.
Nakamura
,
H.
Bailung
, and
P. K.
Shukla
,
Phys. Rev. Lett.
83
,
1602
(
1999
).
8.
S. I.
Popel
and
M. Y.
Yu
,
Contrib. Plasma Phys.
35
,
103
(
1995
).
9.
10.
A. A.
Mamun
,
N.
Jahan
, and
P. K.
Shukla
,
J. Plasma Phys.
75
,
413
(
2009
).
11.
H.
Alinejad
,
Astrophys. Space Sci.
334
,
331
(
2011
).
12.
M. Y.
Yu
and
H.
Luo
,
Phys. Plasmas
15
,
024504
(
2008
).
13.
G.
Gloeckler
,
J.
Geiss
,
H.
Balsiger
,
P.
Bedini
,
J. C.
Cain
,
J.
Fischer
,
L.
Fisk
,
A.
Galvin
,
F.
Gliem
, and
D.
Hamilton
,
Astron. Astrophys. Suppl. Ser.
92
,
267
(
1992
).
14.
E. E.
Antonova
and
N. O.
Ermakova
,
Adv. Space Res.
42
,
987
(
2008
).
15.
A.
Esfandyari-Kalejahi
and
H.
Asgari
,
Phys. Plasmas
12
,
102302
(
2005
).
16.
Y.
Nakamura
and
H.
Sugai
,
Chaos Solitons Fractals
7
,
1023
(
1996
).
17.
R.
Bharuthram
and
P. K.
Shukla
,
Planet Space Sci.
40
,
973
(
1992
).
18.
T. S.
Gill
,
H.
Kaur
,
S.
Bansal
,
N. P.
Saini
, and
P.
Bala
,
Eur. Phys. J. D
41
(
1
),
151
156
(
2007
).
19.
W.
Masood
,
S.
Hussain
,
S.
Mahmood
, and
A. M.
Mirza
,
Chin. Phys. Lett.
26
,
122301
(
2009
).
20.
M. M.
Masud
and
A. A.
Mamun
,
Pramana
81
(
1
),
169
(
2013
).
21.
M.
Shahmansouri
,
Rom. Rep. Phys.
65
(
4
),
1407
(
2013
).
22.
N. S.
Saini
and
P.
Sethi
,
Phys. Plasmas
23
,
103702
(
2016
).
23.
H. G.
Abdelwahed
,
E. K.
El-Shewy
,
A.
El-Depsy
, and
E. F.
El-Shamy
,
Phys. Plasmas
24
(
2
),
023703
(
2017
).
24.
S.
Bansal
,
T. S.
Gill
, and
M.
Aggarwal
,
Phys. Plasmas
26
,
072116
(
2019
).
25.
S.
Bansal
and
M.
Aggarwal
,
Plasma Phys. Rep.
45
(
11
),
991
996
(
2019
).
26.
B. N.
Goswami
and
B.
Buti
,
Phys. Lett. A
57
(
2
),
149
(
1976
).
27.
G. C.
Das
,
S. N.
Paul
, and
B.
Karmaker
,
Phys. Fluids
29
,
2192
(
1986
).
28.
S. S.
Ghosh
,
K. K.
Ghosh
, and
A. N. S.
Iyengar
,
Phys. Plasmas
3
,
3939
(
1996
).
29.
V. K.
Sayal
and
S. R.
Sharma
,
Phys. Lett. A
151
,
72
76
(
1990
).
30.
M.
Berthomier
,
R.
Pottelette
, and
M.
Malingre
,
J. Geophys. Res.
103
(
A3
),
4261
4270
, (
1998
).
31.
M. S.
Alam
,
M. M.
Masud
, and
A. A.
Mamun
,
Plasma Phys. Rep.
39
,
1011
(
2013
).
32.
G.
Sreekala
,
M.
Michael
,
S.
Sebastian
,
N. P.
Abraham
,
G.
Renuka
, and
C.
Venugopal
,
Int. J. Chem. Phys. Sci.
4
,
83
(
2015
).
33.
R.
Kohli
,
N. S.
Saini
, and
T. S.
Gill
,
Astrophys. Space Sci.
363
,
193
(
2018
).
34.
S. I.
Popel
,
A. P.
Golub
, and
T. V.
Losseva
,
Phys. Rev. E
67
,
056402
(
2003
).
35.
S. I.
Popel
,
T. V.
Losseva
,
R. L.
Merlino
,
S. N.
Andreev
, and
A. P.
Golub
,
Phys. Plasmas
12
(
5
),
054501
(
2005
).
36.
T. V.
Losseva
,
S. I.
Popel
,
A. P.
Golub
, and
P. K.
Shukla
,
Phys. Plasmas
16
,
093704
(
2009
).
37.
T. V.
Losseva
,
S. I.
Popel
,
A. P.
Golub
,
Y. N.
Izvekova
, and
P. K.
Shukla
,
Phys. Plasmas
19
,
013703
(
2012
).
38.
M. R.
Gupta
,
S.
Sarkar
,
S.
Ghosh
,
M.
Debnath
, and
M.
Khan
,
Phys. Rev. E
63
,
046402
(
2001
).
39.
S.
Ghosh
,
S.
Sarkar
,
M.
Khan
, and
M. R.
Gupta
,
Phys. Lett. A
274
,
162
169
(
2000
).
40.
S.
Ghosh
,
T. K.
Chaudhuri
,
S.
Sarkar
,
M.
Khan
, and
M. R.
Gupta
,
Phys. Rev. E
65
,
037401
(
2002
).
41.
A. A.
Mamun
and
P. K.
Shukla
,
IEEE Trans. Plasma Sci.
30
(
2
),
720
(
2002
).
42.
S. S.
Duha
,
M. G. M.
Anowar
, and
A. A.
Mamun
,
Phys. Plasmas
17
,
103711
(
2010
).
43.
H.
Alinejad
,
Astron. Space Sci.
331
,
611
(
2011
).
44.
M.
Bacha
,
M.
Tribeche
, and
P. K.
Shukla
,
Phys. Rev. E
65
,
056413
(
2012
).
45.
S.
Dutta
,
S.
Adhikari
,
R.
Monlick
, and
K. S.
Goswami
,
Phys. Scr.
94
(
12
),
125210
(
2019
).
46.
W.
Watanabe
,
J. Plasma Phys.
14
,
353
(
1975
).
47.
Q. Z.
Luo
,
N.
D'Angelo
, and
R.
Merlino
,
Phys. Plasmas
5
,
2868
(
1998
).
48.
B. A.
Finlayson
,
The Method of Weighted Residuals and Variational Principles
(
Academin
,
New York
,
1972
).
49.
H.
Demiray
and
C.
Bayndr
,
Phys. Plasmas
22
(
9
),
092105
(
2015
).
50.
H.
Demiray
and
E. R.
El-Zaher
,
Phys. Plasmas
25
(
4
),
042102
(
2018
).
52.
S. K.
El-Labany
,
M.
Shalaby
,
E. L.
El-Shamy
, and
L. S.
El-Sherif
,
Planet. Space Sci.
57
,
1246
1253
(
2009
).
53.
A. A.
Mamun
and
P. K.
Shukla
,
J. Plasma Phys.
77
(
4
),
437
455
(
2011
).
54.
J. S.
Pickett
,
W. S.
Kurth
,
D. A.
Gurnett
,
R. L.
Huff
,
J. B.
Faden
,
T. F.
Averkamp
,
D.
Pisa
, and
G. H.
Jones
,
J. Geophys. Res.
120
,
6569
6580
, (
2015
).
You do not currently have access to this content.