Recent simulations showed that the whistler heat flux instability, which presumably produces the most of quasi-parallel coherent whistler waves in the solar wind, is not efficient in regulating the electron heat conduction. In addition, recent spacecraft measurements indicated that some fraction of coherent whistler waves in the solar wind may propagate anti-parallel to the electron heat flux, being produced due to a perpendicular temperature anisotropy of suprathermal electrons. We present the analysis of properties of parallel and anti-parallel whistler waves unstable at electron heat fluxes and temperature anisotropies of suprathermal electrons typical of the pristine solar wind. Assuming the electron population consisting of counterstreaming dense thermal core and tenuous suprathermal halo populations, we perform a linear stability analysis to demonstrate that anti-parallel whistler waves are expected to have smaller frequencies, wave numbers, and growth rates compared to parallel whistler waves. The stability analysis is performed over a wide range of parameters of core and halo electron populations. Using the quasi-linear scaling relation, we show that anti-parallel whistler waves saturate at amplitudes of one order of magnitude smaller than parallel whistler waves, which is about 103B0 in the pristine solar wind. The analysis shows that the presence of anti-parallel whistler waves in the pristine solar wind is more likely to be obscured by turbulent magnetic field fluctuations because of lower frequencies and smaller amplitudes compared to parallel whistler waves. The presented results will also be valuable for numerical simulations of the electron heat flux regulation in the solar wind.

1.
K. W.
Ogilvie
,
J. D.
Scudder
, and
M.
Sugiura
, “
Electron energy flux in the solar wind
,”
J. Geophys. Res.
76
,
8165
, (
1971
).
2.
M. D.
Montgomery
, “
Average thermal characteristics of solar wind electrons
,” in
Solar Wind
, edited by
C. P.
Sonett
,
P. J.
Coleman
, and
J. M.
Wilcox
(
Scientific and Technical Information Office, National Aeronautics and Space Administration
,
Washington
,
1972
), Vol.
308
, p.
208
.
3.
W. C.
Feldman
,
J. R.
Asbridge
,
S. J.
Bame
,
M. D.
Montgomery
, and
S. P.
Gary
, “
Solar wind electrons
,”
J. Geophys. Res.
80
,
4181
4196
, (
1975
).
4.
E. E.
Scime
,
S. J.
Bame
,
W. C.
Feldman
,
S. P.
Gary
,
J. L.
Phillips
, and
A.
Balogh
, “
Regulation of the solar wind electron heat flux from 1 to 5 AU: Ulysses observations
,”
J. Geophys. Res.
99
,
23401
, (
1994
).
5.
S. D.
Bale
,
M.
Pulupa
,
C.
Salem
,
C. H. K.
Chen
, and
E.
Quataert
, “
Electron heat conduction in the solar wind: Transition from Spitzer-Härm to the collisionless limit
,”
Astrophys. J. Lett.
769
,
L22
(
2013
).
6.
S.
Landi
,
L.
Matteini
, and
F.
Pantellini
, “
Electron heat flux in the solar wind: Are we observing the collisional limit in the 1 AU data?
,”
Astrophys. J. Lett.
790
,
L12
(
2014
).
7.
W. C.
Feldman
,
J. R.
Asbridge
,
S. J.
Bame
,
S. P.
Gary
,
M. D.
Montgomery
, and
S. M.
Zink
, “
Evidence for the regulation of solar wind heat flux at 1 AU
,”
J. Geophys. Res.
81
,
5207
5211
, (
1976
).
8.
S. P.
Gary
,
E.
Neagu
,
R. M.
Skoug
, and
B. E.
Goldstein
, “
Solar wind electrons: Parametric constraints
,”
J. Geophys. Res.
104
,
19843
19850
, (
1999
).
9.
S. P.
Gary
,
R. M.
Skoug
, and
W.
Daughton
, “
Electron heat flux constraints in the solar wind
,”
Phys. Plasmas
6
,
2607
2612
(
1999
).
10.
Y.
Tong
,
S. D.
Bale
,
C.
Salem
, and
M.
Pulupa
, “
Observed instability constraints on electron heat flux in the solar wind
,” arXiv:1801.07694 (
2018
).
11.
Y.
Tong
,
I. Y.
Vasko
,
A. V.
Artemyev
,
S. D.
Bale
, and
F. S.
Mozer
, “
Statistical study of whistler waves in the solar wind at 1 AU
,”
Astrophys. J.
878
,
41
(
2019
).
12.
I.
Wilson
,
B.
Lynn
,
L.-J.
Chen
,
S.
Wang
,
S. J.
Schwartz
,
D. L.
Turner
,
M. L.
Stevens
,
J. C.
Kasper
,
A.
Osmane
,
D.
Caprioli
,
S. D.
Bale
,
M. P.
Pulupa
,
C. S.
Salem
, and
K. A.
Goodrich
, “
Electron energy partition across interplanetary shocks: II. Statistics
,” arXiv:1909.09050 (
2019
).
13.
T.
Wang
,
L.
Ofman
,
X.
Sun
,
E.
Provornikova
, and
J. M.
Davila
, “
Evidence of thermal conduction suppression in a solar flaring loop by coronal seismology of slow-mode waves
,”
Astrophys. J. Lett.
811
,
L13
(
2015
).
14.
N. H.
Bian
,
J. M.
Watters
,
E. P.
Kontar
, and
A. G.
Emslie
, “
Anomalous cooling of coronal loops with turbulent suppression of thermal conduction
,”
Astrophys. J.
833
,
76
(
2016
).
15.
N.
Bian
,
A. G.
Emslie
,
D.
Horne
, and
E. P.
Kontar
, “
Heating and cooling of coronal loops with turbulent suppression of parallel heat conduction
,”
Astrophys. J.
852
,
127
(
2018
).
16.
L. L.
Cowie
and
C. F.
McKee
, “
The evaporation of spherical clouds in a hot gas. I—Classical and saturated mass loss rates
,”
Astrophys. J.
211
,
135
146
(
1977
).
17.
E.
Bertschinger
and
A.
Meiksin
, “
The role of heat conduction in the cooling flows of galaxy clusters
,”
Astrophys. J. Lett.
306
,
L1
L5
(
1986
).
18.
I.
Zhuravleva
,
E.
Churazov
,
A. A.
Schekochihin
,
S. W.
Allen
,
A.
Vikhlinin
, and
N.
Werner
, “
Suppressed effective viscosity in the bulk intergalactic plasma
,”
Nat. Astron.
3
,
832
837
(
2019
).
19.
M. W.
Kunz
,
J.
Squire
,
S. A.
Balbus
,
S. D.
Bale
,
C. H. K.
Chen
,
E.
Churazov
,
S. C.
Cowley
,
C. B.
Forest
,
C. F.
Gammie
,
E.
Quataert
,
C. S.
Reynolds
,
A. A.
Schekochihin
,
L.
Sironi
,
A.
Spitkovsky
,
J. M.
Stone
,
I.
Zhuravleva
, and
E. G.
Zweibel
, “
[Plasma 2020 Decadal] The material properties of weakly collisional, high-beta plasmas
,” arXiv:1903.04080 (
2019
).
20.
W. C.
Feldman
,
J. R.
Asbridge
,
S. J.
Bame
,
S. P.
Gary
, and
M. D.
Montgomery
, “
Electron parameter correlations in high-speed streams and heat flux instabilities
,”
J. Geophys. Res.
81
,
2377
, (
1976
).
21.
S. P.
Gary
,
W. C.
Feldman
,
D. W.
Forslund
, and
M. D.
Montgomery
, “
Heat flux instabilities in the solar wind
,”
J. Geophys. Res.
80
,
4197
4203
, (
1975
).
22.
S. P.
Gary
,
E. E.
Scime
,
J. L.
Phillips
, and
W. C.
Feldman
, “
The whistler heat flux instability: Threshold conditions in the solar wind
,”
J. Geophys. Res.
99
,
23391
, (
1994
).
23.
B.
Abraham-Shrauner
and
W. C.
Feldman
, “
Whistler heat flux instability in the solar wind with bi-Lorentzian velocity distribution functions
,”
J. Geophys. Res.
82
,
1889
, (
1977
).
24.
M.
Maksimovic
,
V.
Pierrard
, and
P.
Riley
, “
Ulysses electron distributions fitted with Kappa functions
,”
Geophys. Res. Lett.
24
,
1151
1154
, (
1997
).
25.
M.
Maksimovic
,
I.
Zouganelis
,
J. Y.
Chaufray
,
K.
Issautier
,
E. E.
Scime
,
J. E.
Littleton
,
E.
Marsch
,
D. J.
McComas
,
C.
Salem
,
R. P.
Lin
, and
H.
Elliott
, “
Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU
,”
J. Geophys. Res. (Space Phys.)
110
,
A09104
, (
2005
).
26.
V.
Pierrard
,
M.
Lazar
,
S.
Poedts
,
Š.
Štverák
,
M.
Maksimovic
, and
P. M.
Trávníček
, “
The electron temperature and anisotropy in the solar wind. Comparison of the core and halo populations
,”
Sol. Phys.
291
,
2165
2179
(
2016
).
27.
M.
Lazar
,
V.
Pierrard
,
S. M.
Shaaban
,
H.
Fichtner
, and
S.
Poedts
, “
Dual Maxwellian-Kappa modeling of the solar wind electrons: New clues on the temperature of Kappa populations
,”
Astron. Astrophys.
602
,
A44
(
2017
).
28.
Y.
Tong
,
I. Y.
Vasko
,
M.
Pulupa
,
F. S.
Mozer
,
S. D.
Bale
,
A. V.
Artemyev
, and
V.
Krasnoselskikh
, “
Whistler wave generation by halo electrons in the solar wind
,”
Astrophys. J. Lett.
870
,
L6
(
2019
).
29.
S. M.
Shaaban
,
M.
Lazar
, and
S.
Poedts
, “
Clarifying the solar wind heat flux instabilities
,”
Mon. Not. R. Astron. Soc.
480
,
310
319
(
2018
).
30.
S. L.
Pistinner
and
D.
Eichler
, “
Self-inhibiting heat flux
,”
Mon. Not. R. Astron. Soc.
301
,
49
58
(
1998
).
31.
S. M.
Shaaban
,
M.
Lazar
,
P. H.
Yoon
,
S.
Poedts
, and
R. A.
López
, “
Quasi-linear approach of the whistler heat-flux instability in the solar wind
,”
Mon. Not. R. Astron. Soc.
486
,
4498
4507
(
2019
).
32.
G. T.
Roberg-Clark
,
J. F.
Drake
,
C. S.
Reynolds
, and
M.
Swisdak
, “
Suppression of electron thermal conduction in the high β intracluster medium of galaxy clusters
,”
Astrophys. J. Lett.
830
,
L9
(
2016
).
33.
I. V.
Kuzichev
,
I. Y.
Vasko
,
A.
Rualdo Soto-Chavez
,
Y.
Tong
,
A. V.
Artemyev
,
S. D.
Bale
, and
A.
Spitkovsky
, “
Nonlinear evolution of the whistler heat flux instability
,”
Astrophys. J.
882
,
81
(
2019
).
34.
R. A.
López
,
S. M.
Shaaban
,
M.
Lazar
,
S.
Poedts
,
P. H.
Yoon
,
A.
Micera
, and
G.
Lapenta
, “
Particle-in-cell simulations of the whistler heat-flux instability in solar wind conditions
,”
Astrophys. J. Lett.
882
,
L8
(
2019
).
35.
K.
Horaites
,
P.
Astfalk
,
S.
Boldyrev
, and
F.
Jenko
, “
Stability analysis of core-strahl electron distributions in the solar wind
,”
Mon. Not. R. Astron. Soc.
480
,
1499
1506
(
2018
).
36.
S.
Komarov
,
A. A.
Schekochihin
,
E.
Churazov
, and
A.
Spitkovsky
, “
Self-inhibiting thermal conduction in a high-β, whistler-unstable plasma
,”
J. Plasma Phys.
84
,
905840305
(
2018
).
37.
S. M.
Shaaban
,
M.
Lazar
,
P. H.
Yoon
, and
S.
Poedts
, “
Beaming electromagnetic (or heat-flux) instabilities from the interplay with the electron temperature anisotropies
,”
Phys. Plasmas
25
,
082105
(
2018
).
38.
I. Y.
Vasko
,
V.
Krasnoselskikh
,
Y.
Tong
,
S. D.
Bale
,
J. W.
Bonnell
, and
F. S.
Mozer
, “
Whistler fan instability driven by strahl electrons in the solar wind
,”
Astrophys. J. Lett.
871
,
L29
(
2019
).
39.
D.
Verscharen
,
B. D. G.
Chandran
,
S.-Y.
Jeong
,
C. S.
Salem
,
M. P.
Pulupa
, and
S. D.
Bale
, “
Self-induced scattering of strahl electrons in the solar wind
,”
Astrophys. J.
886
,
136
(
2019
).
40.
G. T.
Roberg-Clark
,
O.
Agapitov
,
J. F.
Drake
, and
M.
Swisdak
, “
Scattering of energetic electrons by heat-flux-driven whistlers in flares
,”
Astrophys. J.
887
,
190
(
2019
).
41.
C.
Lacombe
,
O.
Alexandrova
,
L.
Matteini
,
O.
Santolík
,
N.
Cornilleau-Wehrlin
,
A.
Mangeney
,
Y.
de Conchy
, and
M.
Maksimovic
, “
Whistler mode waves and the electron heat flux in the solar wind: Cluster observations
,”
Astrophys. J.
796
,
5
(
2014
).
42.
D.
Stansby
,
T. S.
Horbury
,
C. H. K.
Chen
, and
L.
Matteini
, “
Experimental determination of whistler wave dispersion relation in the solar wind
,”
Astrophys. J. Lett.
829
,
L16
(
2016
).
43.
P.
Kajdič
,
O.
Alexandrova
,
M.
Maksimovic
,
C.
Lacombe
, and
A. N.
Fazakerley
, “
Suprathermal electron strahl widths in the presence of narrow-band whistler waves in the solar wind
,”
Astrophys. J.
833
,
172
(
2016
).
44.
I.
Wilson
,
B.
Lynn
,
L.-J.
Chen
,
S.
Wang
,
S. J.
Schwartz
,
D. L.
Turner
,
M. L.
Stevens
,
J. C.
Kasper
,
A.
Osmane
,
D.
Caprioli
,
S. D.
Bale
,
M. P.
Pulupa
,
C. S.
Salem
, and
K. A.
Goodrich
, “
Electron energy partition across interplanetary shocks. III. Analysis
,”
Astrophys. J.
893
,
22
(
2020
).
45.
R. Z.
Sagdeev
and
V. D.
Shafranov
, “
On the instability of a plasma with an anisotropic distribution of velocities in a magnetic field
,”
Sov. JETP
39
,
181
184
(
1960
).
46.
C. F.
Kennel
and
H. E.
Petschek
, “
Limit on stably trapped particle fluxes
,”
J. Geophys. Res.
71
,
1
, (
1966
).
47.
S. P.
Gary
and
J.
Wang
, “
Whistler instability: Electron anisotropy upper bound
,”
J. Geophys. Res.
101
,
10749
10754
, (
1996
).
48.
C.
Vocks
,
C.
Salem
,
R. P.
Lin
, and
G.
Mann
, “
Electron halo and strahl formation in the solar wind by resonant interaction with whistler waves
,”
Astrophys. J.
627
,
540
549
(
2005
).
49.
V.
Pierrard
,
M.
Lazar
, and
R.
Schlickeiser
, “
Evolution of the electron distribution function in the whistler wave turbulence of the solar wind
,”
Sol. Phys.
269
,
421
438
(
2011
).
50.
C.
Vocks
, “
Kinetic models for whistler wave scattering of electrons in the solar corona and wind
,”
Space Sci. Rev.
172
,
303
314
(
2012
).
51.
X.
Tao
,
L.
Chen
,
X.
Liu
,
Q.
Lu
, and
S.
Wang
, “
Quasilinear analysis of saturation properties of broadband whistler mode waves
,”
Geophys. Res. Lett.
44
,
8122
8129
, (
2017
).
52.
A. B.
Mikhailovskii
,
Theory of Plasma Instabilities: Instabilities of a Homogeneous Plasma
(
Springer
,
1974
), Vol.
1
.
53.
S.
Cuperman
, “
Electromagnetic kinetic instabilities in multicomponent space plasmas: Theoretical predictions and computer simulation experiments
,”
Rev. Geophys. Space Phys.
19
,
307
343
, (
1981
).
54.
I.
Wilson
,
B.
Lynn
,
M. L.
Stevens
,
J. C.
Kasper
,
K. G.
Klein
,
B. A.
Maruca
,
S. D.
Bale
,
T. A.
Bowen
,
M. P.
Pulupa
, and
C. S.
Salem
, “
The statistical properties of solar wind temperature parameters near 1 AU
,”
Astrophys. J.
236
,
41
(
2018
).
55.
D.
Verscharen
,
K. G.
Klein
, and
B. A.
Maruca
, “
The multi-scale nature of the solar wind
,”
Living Rev. Sol. Phys.
16
,
5
(
2019
).
56.
D.
Shklyar
and
H.
Matsumoto
, “
Oblique whistler-mode waves in the inhomogeneous magnetospheric plasma: Resonant interactions with energetic charged particles
,”
Surv. Geophys.
30
,
55
104
(
2009
).
57.
V.
Pierrard
and
M.
Lazar
, “
Kappa distributions: Theory and applications in space plasmas
,”
Sol. Phys.
267
,
153
174
(
2010
).
58.
D.
Summers
and
R. M.
Thorne
, “
The modified plasma dispersion function
,”
Phys. Fluids B
3
,
1835
1847
(
1991
).
59.
R. L.
Mace
and
M. A.
Hellberg
, “
A dispersion function for plasmas containing superthermal particles
,”
Phys. Plasmas
2
,
2098
2109
(
1995
).
60.
M.
Lazar
,
R.
Schlickeiser
, and
P. K.
Shukla
, “
Cumulative effect of the Weibel-type instabilities in symmetric counterstreaming plasmas with kappa anisotropies
,”
Phys. Plasmas
15
,
042103
(
2008
).
61.
M.
Lazar
,
S.
Poedts
, and
M. J.
Michno
, “
Electromagnetic electron whistler-cyclotron instability in bi-Kappa distributed plasmas
,”
Astron. Astrophys.
554
,
A64
(
2013
).
62.
D.
Shklyar
,
J.
Chum
, and
F.
Jirícek
, “
Characteristic properties of Nu whistlers as inferred from observations and numerical modelling
,”
Ann. Geophys.
22
,
3589
3606
(
2004
).
63.
D. J.
McComas
,
S. J.
Bame
,
W. C.
Feldman
,
J. T.
Gosling
, and
J. L.
Phillips
, “
Solar wind halo electrons from 1–4 AU
,”
Geophys. Res. Lett.
19
,
1291
1294
, (
1992
).
64.
A. V.
Artemyev
,
V.
Angelopoulos
, and
J. M.
McTiernan
, “
Near-Earth solar wind: Plasma characteristics from ARTEMIS measurements
,”
J. Geophys. Res. (Space Phys.)
123
,
9955
9962
, (
2018
).
65.
S. M.
Shaaban
,
M.
Lazar
,
P. H.
Yoon
, and
S.
Poedts
, “
Quasilinear approach of the cumulative whistler instability in fast solar wind: Constraints of electron temperature anisotropy
,”
Astron. Astrophys.
627
,
A76
(
2019
).
66.
I.
Wilson
,
B.
Lynn
,
L.-J.
Chen
,
S.
Wang
,
S. J.
Schwartz
,
D. L.
Turner
,
M. L.
Stevens
,
J. C.
Kasper
,
A.
Osmane
,
D.
Caprioli
,
S. D.
Bale
,
M. P.
Pulupa
,
C. S.
Salem
, and
K. A.
Goodrich
, “
Electron energy partition across interplanetary shocks. I. Methodology and data product
,”
Astrophys. J.
243
,
8
(
2019
).
67.
R. L.
Mace
and
R. D.
Sydora
, “
Parallel whistler instability in a plasma with an anisotropic bi-Kappa distribution
,”
J. Geophys. Res. (Space Phys.)
115
,
A07206
, (
2010
).
68.
M.
Lazar
,
R. A.
López
,
S. M.
Shaaban
,
S.
Poedts
, and
H.
Fichtner
, “
Whistler instability stimulated by the suprathermal electrons present in space plasmas
,”
Astrophys. Space Sci.
364
,
171
(
2019
).
69.
S. P.
Gary
, “
Electromagnetic electron beam instabilities: Hot, isotropic beams
,”
J. Geophys. Res.
90
,
10815
10823
, (
1985
).
70.
M.
Lazar
,
P. H.
Yoon
,
R. A.
López
, and
P. S.
Moya
, “
Electromagnetic electron cyclotron instability in the solar wind
,”
J. Geophys. Res. (Space Phys.)
123
,
6
19
, (
2018
).
71.
S. M.
Shaaban
and
M.
Lazar
, “
Whistler instabilities from the interplay of electron anisotropies in space plasmas: A quasi-linear approach
,”
Mon. Not. R. Astron. Soc.
492
,
3529
3539
(
2020
).
72.
C. F.
Kennel
,
F. L.
Scarf
,
F. V.
Coroniti
,
E. J.
Smith
, and
D. A.
Gurnett
, “
Nonlocal plasma turbulence associated with interplanetary shocks
,”
J. Geophys. Res.
87
,
17
34
, (
1982
).
73.
F. V.
Coroniti
,
C. F.
Kennel
,
F. L.
Scarf
, and
E. J.
Smith
, “
Whistler mode turbulence in the disturbed solar wind
,”
J. Geophys. Res.
87
,
6029
6044
, (
1982
).
74.
L. B.
Wilson
,
A.
Koval
,
A.
Szabo
,
A.
Breneman
,
C. A.
Cattell
,
K.
Goetz
,
P. J.
Kellogg
,
K.
Kersten
,
J. C.
Kasper
,
B. A.
Maruca
, and
M.
Pulupa
, “
Electromagnetic waves and electron anisotropies downstream of supercritical interplanetary shocks
,”
J. Geophys. Res. (Space Phys.)
118
,
5
16
, (
2013
).
75.
M.
Liu
,
Y. D.
Liu
,
Z.
Yang
,
L. B.
Wilson
, and
H.
Hu
, “
Kinetic properties of an interplanetary shock propagating inside a coronal mass ejection
,”
Astrophys. J. Lett.
859
,
L4
(
2018
).
76.
H.
Rosenbauer
,
R.
Schwenn
,
E.
Marsch
,
B.
Meyer
,
H.
Miggenrieder
,
M. D.
Montgomery
,
K. H.
Muehlhaeuser
,
W.
Pilipp
,
W.
Voges
, and
S. M.
Zink
, “
A survey on initial results of the HELIOS plasma experiment
,”
J. Geophys. Z. Geophys.
42
,
561
580
(
1977
).
77.
W. G.
Pilipp
,
H.
Miggenrieder
,
M. D.
Montgomery
,
K.-H.
Mühlhäuser
,
H.
Rosenbauer
, and
R.
Schwenn
, “
Characteristics of electron velocity distribution functions in the solar wind derived from the HELIOS plasma experiment
,”
J. Geophys. Res.
92
,
1075
1092
, (
1987
).
78.
Š.
Štverák
,
M.
Maksimovic
,
P. M.
Trávníček
,
E.
Marsch
,
A. N.
Fazakerley
, and
E. E.
Scime
, “
Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, cluster, and Ulysses observations
,”
J. Geophys. Res. (Space Phys.)
114
,
A05104
, (
2009
).
79.
K.
Horaites
,
S.
Boldyrev
,
I.
Wilson
,
B.
Lynn
,
A. F.
Viñas
, and
J.
Merka
, “
Kinetic theory and fast wind observations of the electron strahl
,”
Mon. Not. R. Astron. Soc.
474
,
115
127
(
2018
).
80.
J. S.
Halekas
,
P.
Whittlesey
,
D. E.
Larson
,
D.
McGinnis
,
M.
Maksimovic
,
M.
Berthomier
,
J. C.
Kasper
,
A. W.
Case
,
K. E.
Korreck
,
M. L.
Stevens
,
K. G.
Klein
,
S. D.
Bale
,
R. J.
MacDowall
,
M. P.
Pulupa
,
D. M.
Malaspina
,
K.
Goetz
, and
P. R.
Harvey
, “
Electrons in the young solar wind: First results from the parker solar probe
,”
Astrophys. J.
246
,
22
(
2020
).
81.
S. D.
Bale
,
S. T.
Badman
,
J. W.
Bonnell
,
T. A.
Bowen
,
D.
Burgess
,
A. W.
Case
,
C. A.
Cattell
,
B. D. G.
Chandran
,
C. C.
Chaston
,
C. H. K.
Chen
,
J. F.
Drake
,
T. D.
de Wit
,
J. P.
Eastwood
,
R. E.
Ergun
,
W. M.
Farrell
,
C.
Fong
,
K.
Goetz
,
M.
Goldstein
,
K. A.
Goodrich
,
P. R.
Harvey
,
T. S.
Horbury
,
G. G.
Howes
,
J. C.
Kasper
,
P. J.
Kellogg
,
J. A.
Klimchuk
,
K. E.
Korreck
,
V. V.
Krasnoselskikh
,
S.
Krucker
,
R.
Laker
,
D. E.
Larson
,
R. J.
MacDowall
,
M.
Maksimovic
,
D. M.
Malaspina
,
J.
Martinez-Oliveros
,
D. J.
McComas
,
N.
Meyer-Vernet
,
M.
Moncuquet
,
F. S.
Mozer
,
T. D.
Phan
,
M.
Pulupa
,
N. E.
Raouafi
,
C.
Salem
,
D.
Stansby
,
M.
Stevens
,
A.
Szabo
,
M.
Velli
,
T.
Woolley
, and
J. R.
Wygant
, “
Highly structured slow solar wind emerging from an equatorial coronal hole
,”
Nature
576
,
237
242
(
2019
).
82.
T. A.
Bowen
,
A.
Mallet
,
J.
Huang
,
K. G.
Klein
,
D. M.
Malaspina
,
M.
Stevens
,
S. D.
Bale
,
J. W.
Bonnell
,
A. W.
Case
,
B. D. G.
Chandran
,
C. C.
Chaston
,
C. H. K.
Chen
,
T.
Dudok de Wit
,
K.
Goetz
,
P. R.
Harvey
,
G. G.
Howes
,
J. C.
Kasper
,
K. E.
Korreck
,
D.
Larson
,
R.
Livi
,
R. J.
MacDowall
,
M. D.
McManus
,
M.
Pulupa
,
J. L.
Verniero
, and
P.
Whittlesey
, “
Ion-scale electromagnetic waves in the inner heliosphere
,”
Astrophys. J.
246
,
66
(
2020
).
83.
J. L.
Verniero
,
D. E.
Larson
,
R.
Livi
,
A.
Rahmati
,
M. D.
McManus
,
P. S.
Pyakurel
,
K. G.
Klein
,
T. A.
Bowen
,
J. W.
Bonnell
,
B. L.
Alterman
,
P. L.
Whittlesey
,
D. M.
Malaspina
,
S. D.
Bale
,
J. C.
Kasper
,
A. W.
Case
,
K.
Goetz
,
P. R.
Harvey
,
K. E.
Korreck
,
R. J.
MacDowall
,
M.
Pulupa
,
M. L.
Stevens
, and
T. D.
de Wit
, “
Parker solar probe observations of proton beams simultaneous with ion-scale waves
,”
Astrophys. J.
248
,
5
(
2020
).
84.
A.
Breneman
,
C.
Cattell
,
S.
Schreiner
,
K.
Kersten
,
L. B.
Wilson
 III
,
P.
Kellogg
,
K.
Goetz
, and
L. K.
Jian
, “
Observations of large-amplitude, narrowband whistlers at stream interaction regions
,”
J. Geophys. Res. (Space Phys.)
115
,
A08104
, (
2010
).
85.
C. A.
Cattell
,
B.
Short
,
A. W.
Breneman
, and
P.
Grul
, “
Narrowband large amplitude whistler-mode waves in the solar wind and their association with electrons: STEREO waveform capture observations
,” arXiv:2003.09659 (
2020
).
You do not currently have access to this content.