It is known that the gyrotron theory is developed in a general form that allows one to draw many important conclusions about gyrotron operation, which are valid for gyrotrons operating in arbitrary modes, at arbitrary frequencies, and driven by electron beams with different voltages and currents. One of important issues in this theory is the analysis of possible start-up scenarios, i.e., the methods allowing, first, to excite the desired mode prior to competitors in the region of soft self-excitation of this mode and, then, drive it into the zone of hard self-excitation where, as a rule, the operation with high efficiency is possible. So far, in all studies, these zones of soft and hard self-excitation were defined for specific voltages. In the present paper, it is shown how one can determine these zones in a more general manner that makes the results applicable to gyrotrons operating at arbitrary voltages. The study also includes consideration of the no-start-current zones and the role of electron velocity spread.

1.
V. A.
Flyagin
,
A. V.
Gaponov
,
M. I.
Petelin
, and
V. K.
Yulpatov
,
IEEE Trans. MTT
25
,
514
(
1977
).
2.
K. R.
Chu
,
Rev. Mod. Phys.
76
(
2
),
489
(
2004
).
3.
G. S.
Nusinovich
,
M. K. A.
Thumm
, and
M. I.
Petelin
,
J. Infrared Millimeter, Terahertz Waves
35
,
325
(
2014
).
4.
V. A.
Flyagin
and
G. S.
Nusinovich
,
Proc. IEEE
76
,
644
(
1988
).
5.
M. K. A.
Thumm
,
G. G.
Denisov
,
K.
Sakamoto
, and
M. Q.
Tran
,
Nucl. Fusion
59
,
073001
(
2019
).
6.
G. S.
Nusinovich
,
O. V.
Sinitsyn
,
L.
Velikovich
,
M.
Yeddulla
,
T. M.
Antonsen
, Jr.
,
A. N.
Vlasov
,
S. R.
Cauffman
, and
K.
Felch
,
IEEE Trans. Plasma Sci.
32
(
3
),
841
(
2004
).
7.
G. S.
Nusinovich
,
Elektron. Tekh., Ser. I, Elektron. SVCh
3
,
44
(
1974
).
8.
K.
Sakamoto
,
A.
Kasugai
,
K.
Takahashi
,
R.
Minami
,
N.
Kobayashi
, and
K.
Kajiwara
,
Nat. Phys.
3
,
411
(
2007
).
9.
E.
Borie
and
B.
Jodicke
,
Int. J. Infrared Millimeter Waves
8
(
3
),
207
(
1987
).
10.
D. R.
Whaley
,
M. Q.
Tran
,
S.
Alberti
,
T. M.
Tran
,
T. M.
Antonsen
, Jr.
, and
C.
Tran
,
Phys. Rev. Lett.
75
(
7
),
1304
(
1995
).
11.
D. R.
Whaley
,
M. Q.
Tran
,
T. M.
Tran
, and
T. M.
Antonsen
, Jr.
,
IEEE Trans. Plasma Sci.
22
(
5
),
850
(
1994
).
12.
O.
Dumbrajs
,
T.
Saito
, and
Y.
Tatematsu
,
Phys. Plasmas
23
,
023106
(
2016
).
13.
G. S.
Nusinovich
,
Introduction to the Physics of Gyrotrons
(
The Johns Hopkins University Press
,
Baltimore-London
,
2004
).
14.
V. S.
Ergakov
,
M. A.
Moiseev
, and
R. E.
Erm
,
Elektron. Tekh., Ser. I, Elektron. SVCh
3
,
20
27
(
1980
) (in Russian).
15.
V. L.
Bratman
,
M. A.
Moiseev
,
M. I.
Petelin
, and
R. E.
Erm
,
Radiophys. Quantum Electron.
16
,
474
(
1973
).
16.
M. A.
Moiseev
and
G. S.
Nusinovich
,
Radiophys. Quantum Electron.
17
,
1305
(
1974
).
17.
A. A.
Andronov
,
A. A.
Vitt
, and
S. E.
Khaikin
,
Theory of Oscillators
(
Pergamon Press
,
Oxford/London
,
1966
).
18.
G. S.
Nusinovich
and
O.
Dumbrajs
,
Phys. Plasmas
25
,
093108
(
2018
).
19.
B. G.
Danly
and
R. J.
Temkin
,
Phys. Fluids
29
(
2
),
561
(
1986
).
20.
M. I.
Petelin
and
V. K.
Yulpatov
,
Lectures on Microwave Electronics
(
Saratov University
,
Saratov
,
1974
), Vol. 4, p.
55
(in Russian).
21.
G. S.
Nusinovich
,
Int. J. Electron.
64
(
1
),
127
(
1988
).
22.
A. L.
Goldenberg
and
M. I.
Petelin
,
Radiophys. Quantum Electron.
16
,
106
(
1973
).
23.
G. S.
Nusinovich
and
R. E.
Erm
,
Elektron. Tekh., Ser. I, Elektron. SVCh
8
,
55
(
1972
).
24.
P. C.
Kalaria
,
M. V.
Kartikeyan
, and
M.
Thumm
,
IEEE Trans. Plasma Sci.
42
(
6
),
1522
(
2014
).
25.
O.
Dumbrajs
and
J. P. T.
Koponen
,
Phys. Plasmas
6
(
6
),
2618
(
1999
).
26.
O.
Dumbrajs
and
G. S.
Nusinovich
,
Phys. Plasmas
25
,
013121
(
2018
).
You do not currently have access to this content.