Modeling the transport of “dust” particles in a magnetically confined plasma device is an area of active research and requires a detailed understanding of the forces experienced by dust immersed in a plasma. One of the most significant of these is the “ion drag force.” Dust transport codes employ a model of this force that was not specifically designed for fusion plasmas and so does not consider the relevance of strong magnetic fields. However, it is shown here that the effect of magnetic fields on the ion drag force is significant for such plasmas. In this work, the Monte Carlo code DiMPl is employed to perform the first detailed characterization of the dependence of the ion drag force on magnetic fields. A semi-empirical model of this dependence is fitted onto the simulation data, so that these magnetic effects may be straightforwardly captured by dust transport codes. The limiting behavior of the ion drag force in the case of very strong fields is derived analytically and shown to be consistent with the simulation results. The validity of the results is further motivated through a novel theoretical treatment of the ion drag force at intermediate magnetic field strengths.

1.
J.
Winter
and
G.
Gebauer
, “
Dust in magnetic confinement fusion devices and its impact on plasma operation
,”
J. Nucl. Mater.
266-269
,
228
233
(
1999
).
2.
J.
Winter
, “
Dust: A new challenge in nuclear fusion research?
,”
Phys. Plasmas
7
,
3862
(
2000
).
3.
A.
Uccello
,
G.
Gervasini
,
F.
Ghezzi
,
E.
Lazzaro
,
M.
Bacharis
,
J.
Flanagan
,
G.
Matthews
,
A.
Järvinen
, and
M.
Sertoli
, “
Comparison of dust transport modelling codes in a tokamak plasma
,”
Phys. Plasmas
23
,
102506
(
2016
).
4.
A.
Autricque
,
S. H.
Hong
,
N.
Fedorczak
,
S. H.
Son
,
H. Y.
Lee
,
I.
Song
,
W.
Choe
, and
C.
Grisolia
, “
Simulation of W dust transport in the KSTAR tokamak, comparison with fast camera data
,”
Nucl. Mater. Energy
12
,
599
(
2017
).
5.
M.
Bacharis
,
M.
Coppins
, and
J. E.
Allen
, “
Dust in tokamaks: An overview of the physical model of the dust in tokamaks code
,”
Phys. Plasmas
17
,
042505
(
2010
).
6.
A. Y.
Pigarov
,
S. I.
Krasheninnikov
,
T. K.
Soboleva
, and
T. D.
Rognlien
, “
Dust-particle transport in tokamak edge plasmas
,”
Phys. Plasmas
12
,
122508
122515
(
2005
).
7.
L.
Vignitchouk
,
P.
Tolias
, and
S.
Ratynskaia
, “
Dust–wall and dust–plasma interaction in the MIGRAINe code
,”
Plasma Phys. Controlled Fusion
56
,
095005
(
2014
).
8.
G.
Gervasini
,
E.
Lazzaro
, and
A.
Uccello
, “
Physical and numerical model for calculation of ensembles of trajectories of dust particles in a tokamak
,”
J. Fusion Energy
36
,
25
39
(
2017
).
9.
S. A.
Khrapak
,
A. V.
Ivlev
,
G. E.
Morfill
, and
H. M.
Thomas
, “
Ion drag force in complex plasmas
,”
Phys. Rev. E
66
,
046414
(
2002
).
10.
S. A.
Khrapak
,
A. V.
Ivlev
,
S. K.
Zhdanov
, and
G. E.
Morfill
, “
Hybrid approach to the ion drag force
,”
Phys. Plasmas
12
,
042308
(
2005
).
11.
J.
Rubinstein
and
J. G.
Laframboise
, “
Theory of a spherical probe in a collisionless magnetoplasma
,”
Phys. Fluids
25
,
1174
1182
(
1982
).
12.
W. J.
Miloch
,
H.
Jung
,
D.
Darian
,
F.
Greiner
,
M.
Mortensen
, and
A.
Piel
, “
Dynamic ion shadows behind finite-sized objects in collisionless magnetized plasma flows
,”
New J. Phys.
20
,
073027
(
2018
).
13.
P.
Ludwig
,
H.
Jung
,
H.
Kählert
,
J. P.
Joost
,
F.
Greiner
,
Z.
Moldabekov
,
J.
Carstensen
,
S.
Sundar
,
M.
Bonitz
, and
A.
Piel
, “
Non-Maxwellian and magnetic field effects in complex plasma wakes
,”
Eur. Phys. J. D
72
,
82
(
2018
).
14.
S.
Sundar
, “
Wake effects of a stationary charged grain in streaming magnetized ions
,”
Phys. Rev. E
98
,
023206
(
2018
).
15.
H.
Kählert
,
J. P.
Joost
,
P.
Ludwig
, and
M.
Bonitz
, “
Streaming complex plasmas: Ion susceptibility for a partially ionized plasma in parallel electric and magnetic fields
,”
Contrib. Plasma Phys.
56
,
204
214
(
2016
).
16.
H.
Nersisyan
,
C.
Toepffer
, and
G.
Zwicknagel
,
Interactions Between Charged Particles in a Magnetic Field: A Theoretical Approach to Ion Stopping in Magnetized Plasmas
(
Springer
,
Berlin
,
2007
), pp.
1
187
.
17.
H. B.
Nersisyan
,
G.
Zwicknagel
, and
C.
Toepffer
, “
Conformity between linear response and binary collision treatments of an ion energy loss in a magnetized quantum plasma
,”
Eur. Phys. J. D
28
,
235
239
(
2004
).
18.
H. B.
Nersisyan
and
G.
Zwicknagel
, “
Energy transfer in binary collisions of two gyrating charged particles in a magnetic field
,”
Phys. Plasmas
17
,
082314
(
2010
).
19.
L. M.
Simons
and
M.
Coppins
, “
Floating potential of spherical dust in collisionless magnetised plasmas
,” arXiv:2003.14082 (
2020
).
20.
T.
Makkonen
,
M. I.
Airila
, and
T.
Kurki-Suonio
, “
Generating equally weighted test particles from the one-way flux of a drifting Maxwellian
,”
Phys. Scr.
90
,
015204
(
2015
).
21.
I. H.
Hutchinson
, “
Collisionless ion drag force on a spherical grain
,”
Plasma Phys. Controlled Fusion
48
,
185
202
(
2006
).
22.
D.
Darian
,
W. J.
Miloch
,
M.
Mortensen
,
Y.
Miyake
, and
H.
Usui
, “
Numerical simulations of a dust grain in a flowing magnetized plasma
,”
Phys. Plasmas
26
,
043701
(
2019
).
23.
D.
Thomas
, “
Theory and simulation of the charging of dust in plasmas
,” Ph.D. thesis (
Imperial College London
,
2016
).
24.
L. J.
Sonmor
and
J. G.
Laframboise
, “
Exact current to a spherical electrode in a collisionless, large-Debye-length magnetoplasma
,”
Phys. Fluids B
3
,
2472
2490
(
1991
).
25.
I. H.
Hutchinson
, “
Ion collection by a sphere in a flowing plasma: 3. Floating potential and drag force
,”
Plasma Phys. Controlled Fusion
47
,
71
87
(
2005
).
26.
G. L.
Delzanno
,
E.
Camporeale
,
J.
David Moulton
,
J. E.
Borovsky
,
E. A.
MacDonald
, and
M. F.
Thomsen
, “
CPIC: A curvilinear particle-in-cell code for plasma-material interaction studies
,”
IEEE Trans. Plasma Sci.
41
,
3577
3587
(
2013
).
27.
N.
Rizopoulou
,
A. P. L.
Robinson
,
M.
Coppins
, and
M.
Bacharis
, “
A kinetic study of the source–collector sheath system in a drifting plasma
,”
Plasma Sources Sci. Technol.
22
,
035003
(
2013
).
28.
D.
Lange
, “
Floating surface potential of spherical dust grains in magnetized plasmas
,”
J. Plasma Phys.
82
,
905820101
(
2016
).
29.
D. M.
Thomas
and
J. T.
Holgate
, “
A treecode to simulate dust-plasma interactions
,”
Plasma Phys. Controlled Fusion
59
,
025002
(
2017
).
30.
A.
Wynn
,
B.
Lipschultz
,
I.
Cziegler
,
J.
Harrison
,
A.
Jaervinen
,
G. F.
Matthews
,
J.
Schmitz
,
B.
Tal
,
M.
Brix
,
C.
Guillemaut
,
D.
Frigione
,
A.
Huber
,
E.
Joffrin
,
U.
Kruzei
,
F.
Militello
,
A.
Nielsen
,
N. R.
Walkden
, and
S.
Wiesen
, “
Investigation into the formation of the scrape-off layer density shoulder in JET ITER-like wall L-mode and H-mode plasmas
,”
Nucl. Fusion
58
,
056001
(
2018
).
31.
I. H.
Hutchinson
and
C. B.
Haakonsen
, “
Collisional effects on nonlinear ion drag force for small grains
,”
Phys. Plasmas
20
,
83701
(
2013
).
32.
L.
Patacchini
and
I. H.
Hutchinson
, “
Ion-collecting sphere in a stationary, weakly magnetized plasma with finite shielding length
,”
Plasma Phys. Controlled Fusion
49
,
1719
1733
(
2007
).
33.
I. L.
Semenov
,
A. G.
Zagorodny
, and
I. V.
Krivtsun
, “
Ion drag force on a dust grain in a weakly ionized collisional plasma
,”
Phys. Plasmas
20
,
013701
(
2013
).
34.
I. L.
Semenov
,
S. A.
Khrapak
, and
H. M.
Thomas
, “
Momentum transfer cross-section for ion scattering on dust particles
,”
Phys. Plasmas
24
,
033710
(
2017
).
35.
S.
Khrapak
and
G.
Morfill
, “
Basic processes in complex (dusty) plasmas: Charging, interactions, and ion drag force
,”
Contrib. Plasma Phys.
49
,
148
168
(
2009
).
You do not currently have access to this content.