Determining the equilibrium charge of conducting spheres in plasmas is important for interpreting Langmuir probe measurements, plasma surface interactions, and dust particle behavior. The Monte Carlo code Dust in Magnetised Plasmas (DiMPl) has been developed for the purpose of determining the forces and charging behavior of conducting spheroids under a variety of conditions and benchmarked against previous numerical results. The floating potentials of spheres in isothermal, collisionless, hydrogen plasmas as a function of magnetic field strength and size relative to the Debye length are studied using DiMPl and compared with new results from the N-body tree code (pot) and recent particle in cell measurements. The results of all three simulations are similar, identifying a small range at modest ion magnetization parameters over which the electron current is reduced relative to the ion current. The potential as a function of magnetic field strength is found to be relatively insensitive to dust size for dust smaller than the Debye length. The potential of large dust is found to depend less strongly on flow speed for modest magnetic field strengths and to decrease with increasing flow speed in the presence of strong magnetic fields for smaller dust. A semi-empirical model for the potential of small dust in a collisionless plasma as a function of magnetic field strength is developed, which reproduces the expected currents and potentials in the high and low magnetic field limit.

1.
H. M.
Mott-Smith
and
I.
Langmuir
, “
The theory of collectors in gaseous discharges
,”
Phys. Rev.
28
,
727
763
(
1926
).
2.
D. A.
Mendis
and
M.
Rosenberg
, “
Cosmic dusty plasma
,”
Annu. Rev. Astron. Astrophys.
32
,
419
463
(
1994
).
3.
M. B.
Hopkins
and
W. G.
Graham
, “
Langmuir probe technique for plasma parameter measurement in a medium density discharge
,”
Rev. Sci. Instrum.
57
,
2210
2217
(
1986
).
4.
L.
Spitzer
, “
The dynamics of the interstellar medium
,”
Astrophys. J.
93
,
369
379
(
1941
).
5.
M.
Bacharis
,
M.
Coppins
, and
J. E.
Allen
, “
Critical issues for modeling dust transport in tokamaks
,”
Phys. Rev. E
82
,
026403
(
2010
).
6.
H. B.
Garrett
, “
The charging of spacecraft surfaces
,”
Rev. Geophys.
19
,
577
616
, (
1981
).
7.
J.
Olson
,
W. J.
Miloch
,
S.
Ratynskaia
, and
V.
Yaroshenko
, “
Potential structure around the Cassini spacecraft near the orbit of Enceladus
,”
Phys. Plasmas
17
,
102904
(
2010
).
8.
P. C.
Stangeby
, “
Plasma sheath transmission factors for tokamak edge plasmas
,”
Phys. Fluids
27
,
682
(
1984
).
9.
A.
Malizia
,
L. A.
Poggi
,
J. F.
Ciparisse
,
R.
Rossi
,
C.
Bellecci
, and
P.
Gaudio
, “
A review of dangerous dust in fusion reactors: From its creation to its resuspension in case of LOCA and LOVA
,”
Energies
9
,
578
(
2016
).
10.
T.
Pütterich
,
R.
Neu
,
R.
Dux
,
A. D.
Whiteford
,
M. G.
O'Mullane
, and
H. P.
Summers
, “
Calculation and experimental test of the cooling factor of tungsten
,”
Nucl. Fusion
50
,
025012
(
2010
).
11.
P. C.
De Vries
,
M. F.
Johnson
,
B.
Alper
,
P.
Buratti
,
T. C.
Hender
,
H. R.
Koslowski
, and
V.
Riccardo
, “
Survey of disruption causes at JET
,”
Nucl. Fusion
51
,
053018
(
2011
).
12.
G. R.
Longhurst
,
L. L.
Snead
, and
A.
Abou-Sena
The status of beryllium research for fusion in the Uited States
,” Work. Pap. (2003), available at https://www.researchgate.net/publication/315767976_The_Status_of_Beryllium_Research_for_Fusion_in_the_United_States.
13.
J.
Roth
,
E.
Tsitrone
,
T.
Loarer
,
V.
Philipps
,
S.
Brezinsek
,
A.
Loarte
,
G. F.
Counsell
,
R. P.
Doerner
,
K.
Schmid
,
O. V.
Ogorodnikova
, and
R. A.
Causey
, “
Tritium inventory in ITER plasma-facing materials and tritium removal procedures
,”
Plasma Phys. Controlled Fusion
50
,
103001
(
2008
).
14.
J. E.
Allen
, “
Probe theory—The orbital motion approach
,”
Phys. Scr.
45
,
497
503
(
1992
).
15.
C. T. N.
Willis
,
M.
Coppins
,
M.
Bacharis
, and
J. E.
Allen
, “
Floating potential of large dust grains in a collisionless flowing plasma
,”
Phys. Rev. E
85
,
036403
(
2012
).
16.
H.
Kimura
and
I.
Mann
, “
The electric charging of interstellar dust in the solar system and consequences for its dynamics
,”
Astrophys. J.
499
,
454
462
(
1998
).
17.
I. H.
Hutchinson
, “
Ion collection by a sphere in a flowing plasma: 3. Floating potential and drag force
,”
Plasma Phys. Controlled Fusion
47
,
71
87
(
2005
).
18.
G. L.
Delzanno
,
E.
Camporeale
,
J.
David Moulton
,
J. E.
Borovsky
,
E. A.
MacDonald
, and
M. F.
Thomsen
, “
CPIC: A curvilinear particle-in-cell code for plasma-material interaction studies
,”
IEEE Trans. Plasma Sci.
41
,
3577
3587
(
2013
).
19.
N.
Rizopoulou
,
A. P.
Robinson
,
M.
Coppins
, and
M.
Bacharis
, “
A kinetic study of the source-collector sheath system in a drifting plasma
,”
Plasma Sources Sci. Technol.
22
,
035003
(
2013
).
20.
D.
Bohm
,
The Characteristics of Electrical Discharges in Magnetic Fields
, edited by
A.
Guthrie
and
R. K.
Wakerling
(
McGraw-Hill Book Company, Inc
.,
New York
,
1949
).
21.
I. B.
Bernstein
and
I. N.
Rabinowitz
, “
Theory of electrostatic probes in a low-density plasma
,”
Phys. Fluids
2
,
112
121
(
1959
).
22.
J. G.
Laframboise
,
Theory of Spherical and Cylindrical Langmuir Probes in a Collisionless, Maxwellian Plasma at Rest
(
University Toronto Institute Aerospace Studies
,
1966
).
23.
A. Y.
Pigarov
,
S. I.
Krasheninnikov
,
T. K.
Soboleva
, and
T. D.
Rognlien
, “
Dust-particle transport in tokamak edge plasmas
,”
Phys. Plasmas
12
,
122508
122515
(
2005
).
24.
J. T.
Holgate
and
M.
Coppins
, “
Electron emission from electrically isolated spheres
,”
J. Vac. Sci. Technol., B
36
,
02C102
(
2018
).
25.
S.
Dushman
, “
Electron emission from metals
,”
Phys. Rev.
21
,
623
636
(
1923
).
26.
D. E.
Wooldridge
, “
Theory of secondary emission
,”
Phys. Rev.
107
,
977
981
(
1957
).
27.
E. W.
Thomas
,
R. K.
Janev
, and
J.
Smith
, “
Scaling of particle reflection coefficients
,”
Nucl. Inst. Methods Phys. Res., Sect. B
69
,
427
436
(
1992
).
28.
A.
Schmidt-Ott
and
B.
Federer
, “
Photoelectron emission from small particles suspended in a gas
,”
Surf. Sci.
106
,
538
543
(
1981
).
29.
N.
Rizopoulou
and
M.
Bacharis
, “
Emitting large dust grains: Floating potential and potential wells
,”
Phys. Plasmas
25
,
063703
(
2018
).
30.
S. I.
Krasheninnikov
,
R. D.
Smirnov
, and
D. L.
Rudakov
, “
Dust in magnetic fusion devices
,”
Plasma Phys. Controlled Fusion
53
,
083001
(
2011
).
31.
M.
Bacharis
,
M.
Coppins
,
W.
Fundamenski
, and
J. E.
Allen
, “
Modelling of tungsten and beryllium dust in ITER
,”
Plasma Phys. Controlled Fusion
54
,
085010
(
2012
).
32.
A.
Autricque
,
S. H.
Hong
,
N.
Fedorczak
,
S. H.
Son
,
H. Y.
Lee
,
I.
Song
,
W.
Choe
, and
C.
Grisolia
, “
Simulation of W dust transport in the KSTAR tokamak, comparison with fast camera data
,”
Nucl. Mater. Energy
12
,
599
604
(
2017
).
33.
Y.
Tanaka
,
A. Y.
Pigarov
,
R. D.
Smirnov
,
S. I.
Krasheninnikov
,
N.
Ohno
, and
Y.
Uesugi
, “
Modeling of dust-particle behavior for different materials in plasmas
,”
Phys. Plasmas
14
,
052504
(
2007
).
34.
G.
Gervasini
,
E.
Lazzaro
, and
A.
Uccello
, “
Physical and numerical model for calculation of ensembles of trajectories of dust particles in a tokamak
,”
J. Fusion Energy
36
,
25
39
(
2017
).
35.
L.
Vignitchouk
,
P.
Tolias
, and
S.
Ratynskaia
, “
Dust–wall and dust–plasma interaction in the MIGRAINe code
,”
Plasma Phys. Controlled Fusion
56
,
095005
(
2014
).
36.
L.
Vignitchouk
,
S.
Ratynskaia
, and
P.
Tolias
, “
Analytical model of particle and heat flux collection by dust immersed in dense magnetized plasmas
,”
Plasma Phys. Controlled Fusion
59
,
104002
(
2017
).
37.
J. G.
Laframboise
and
J.
Rubinstein
, “
Theory of a spherical probe in a collisionless magnetoplasma
,”
Phys. Fluids
19
,
1900
1908
(
1976
).
38.
L.
Patacchini
,
I. H.
Hutchinson
, and
G.
Lapenta
, “
Electron collection by a negatively charged sphere in a collisionless magnetoplasma
,”
Phys. Plasmas
14
,
062111
(
2007
).
39.
D.
Lange
, “
Floating surface potential of spherical dust grains in magnetized plasmas
,”
J. Plasma Phys.
82
,
905820101
(
2016
).
40.
D. M.
Thomas
and
J. T.
Holgate
, “
A treecode to simulate dust–plasma interactions
,”
Plasma Phys. Controlled Fusion
59
,
025002
(
2017
).
41.
L. J.
Sonmor
and
J. G.
Laframboise
, “
Exact current to a spherical electrode in a collisionless, large-Debye-length magnetoplasma
,”
Phys. Fluids B
3
,
2472
2490
(
1991
).
42.
E. C.
Whipple
, “
The equilibrium electric potential of a body in the upper atmosphere and in interplanetary space
,” Ph.D. thesis (
George Washington
,
1965
).
43.
J. R.
Sanmartin
, “
Theory of a probe in a strong magnetic field
,”
Phys. Fluids
13
,
103
116
(
1970
).
44.
V. N.
Tsytovich
,
N.
Sato
, and
G. E.
Morfill
, “
Note on the charging and spinning of dust particles in complex plasmas in a strong magnetic field
,”
New J. Phys.
5
,
43
(
2003
).
45.
See https://github.com/LukeSimons/DMP for the DiMPl code.
46.
T.
Makkonen
,
M. I.
Airila
, and
T.
Kurki-Suonio
, “
Generating equally weighted test particles from the one-way flux of a drifting Maxwellian
,”
Phys. Scr.
90
,
015204
(
2015
).
47.
J. P.
Boris
, “
Relativistic plasma simulation-optimization
,” in
4th Conference on Numerical Simulation of Plasma
(
1970
), p.
3
.
48.
R. V.
Kennedy
and
J. E.
Allen
, “
The floating potential of spherical probes and dust grains. II: Orbital motion theory
,”
J. Plasma Phys.
69
,
485
506
(
2003
).
You do not currently have access to this content.