In this paper, the effect of surface recombination on N-atom production is discussed through a one-dimensional simulation of Townsend dielectric barrier discharge in pure N2 based on a fluid model. By comparison of the experimental results, the recommended value of the sticking coefficient of N–N surface recombination is 0.5–1. The spatial-temporal distribution of N-atom of simulation results in discharge and post-discharge agree with experimental results. When the sticking coefficient is 0.5, the primary active species include N, N2(A), and N2(a′). N4+ is the densest positive ion, which can reach 4.77 × 109 cm−3. N-atom can reach the saturation level within about 30 ms. The highest number density is 3.14 × 1014 cm−3 at the position 0.25 mm away from the surface. The numerical simulation results are very consistent with the experimental results. The contribution of surface recombination and three-body recombination for the decay of N-atom are roughly equal in the post-discharge region.

1.
P.
Bruggeman
,
F.
Iza
, and
R.
Brandenburg
,
Plasma Sources Sci. Technol.
26
(
12
),
123002
(
2017
).
2.
U.
Kogelschatz
,
Plasma Chem. Plasma Process.
23
(
1
),
1
(
2003
).
3.
G.
Dilecce
,
P. F.
Ambrico
, and
S.
Debenedictis
,
Plasma Sources Sci. Technol.
16
(
3
),
511
(
2007
).
4.
E. T.
Es-Sebbar
,
C.
Sarra-Bournet
,
N.
Naude
,
F.
Massines
, and
N.
Gherardi
,
J. Appl. Phys.
106
(
7
),
073302
(
2009
).
5.
D.
Tsyganov
and
S.
Pancheshnyi
,
Plasma Sources Sci. Technol.
21
(
65010
),
065010
(
2012
).
6.
M.
Capitelli
,
G.
Colonna
,
G.
D'Ammando
,
V.
Laporta
, and
A.
Laricchiuta
,
Phys. Plasmas
20
(
10
),
101609
(
2013
).
7.
I.
Armenise
,
M.
Capitelli
,
C.
Gorse
,
M.
Cacciatore
, and
M.
Rutigliano
,
J. Spacecr. Rockets
37
,
318
(
2000
).
8.
I.
Armenise
and
M.
Capitelli
,
Plasma Sources Sci. Technol.
14
(
2
),
S9
(
2005
).
9.
M.
Capitelli
,
G.
Colonna
,
G. D.
Ammando
,
V.
Laporta
, and
A.
Laricchiuta
,
Chem. Phys.
438
,
31
(
2014
).
10.
G.
Colonna
,
L. D.
Pietanza
, and
M.
Capitelli
,
J. Thermophys. Heat Transfer
22
(
3
),
399
(
2008
).
11.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
Wiley
,
New York
,
2005
).
12.
V.
Laporta
,
R.
Celiberto
, and
J. M.
Wadehra
,
Plasma Sources Sci. Technol.
21
,
055018
(
2012
).
13.
I.
Armenise
,
M.
Capitelli
,
E.
Garcia
,
C.
Gorse
,
A.
Laganà
, and
S.
Longo
,
Chem. Phys. Lett.
200
(
6
),
597
(
1992
).
14.
M.
Capitelli
,
C. M.
Ferreira
,
B. F.
Gordiets
, and
A. I.
Osipov
,
Plasma Kinetics in Atmospheric Gases
(
Springer
,
Berlin Heidelberg
,
2000
).
15.
A. O.
Brezmes
and
C.
Breitkopf
,
Vacuum
116
,
65
(
2015
).
16.
S.
Li
,
X.
Wang
,
Y.
Liu
,
Q.
Cheng
,
B.
Bian
,
H.
Pu
,
T.
Ma
, and
B.
Tang
,
AIP Adv.
10
(
2
),
25322
(
2020
).
17.
G. D.
Deepak
,
N. K.
Joshi
, and
R.
Prakash
,
AIP Adv.
8
(
5
),
55321
(
2018
).
18.
F.
Sohbatzadeh
and
H.
Soltani
,
J. Theor. Appl. Phys.
12
(
1
),
53
(
2018
).
19.
A.
Komuro
,
R.
Ono
, and
T.
Oda
,
Plasma Sources Sci. Technol.
19
(
5
),
055004
(
2010
).
20.
G. J. M.
Hagelaar
and
L. C.
Pitchford
,
Plasma Sources Sci. Technol.
14
(
4
),
722
(
2005
).
21.
L. C.
Pitchford
and
A. V.
Phelps
,
Phys. Rev A
31
(
5
),
2932
(
1985
).
22.
See https://fr.lxcat.net/home/index.php for PHELPS database.
23.
I. A.
Kossyi
,
A. Y.
Kostinsky
,
A. A.
Matveyev
, and
V. P.
Silakov
,
Plasma Sources Sci. Technol.
1
(
3
),
207
(
1992
).
24.
K. A.
Vereshchagin
,
V. V.
Smirnov
, and
V. A.
Shakhatov
,
Tech. Phys.
42
(
5
),
487
(
1997
).
25.
Y.
Itikawa
and
N.
Mason
,
J. Phys. Chem. Ref. Data
34
(
1
),
1
(
2005
).
26.
S.
Li
,
F.
Gu
,
B.
Tang
,
T.
Ma
, and
X.
Wang
,
AIP Adv.
9
(
3
),
35219
(
2019
).
You do not currently have access to this content.