The investigation of interaction between modes resonant with electrons at different cyclotron harmonics is presented. The study is focused on mode interaction in the region of currents lower than the start current of the parasitic mode at the fundamental. In this region, the excitation of such parasitic modes is possible due to nonlinear excitation of them by the harmonic modes only. It is shown that, when the beam current increases, various oscillation regimes replace each other: when the current exceeds the start current of the harmonic mode only slightly, the single-frequency oscillations of this mode are stable. At higher currents, due to nonlinear excitation, the oscillations of both modes with constant amplitudes are possible. Then, this regime is replaced by the auto-modulation of two modes with periodically varying mode amplitudes. Finally, at even higher currents, the parasitic mode at the fundamental suppresses the parental second harmonic mode. The role of two saturation mechanisms (the orbital phase bunching and the depletion of the free rotational energy in the process of beam-wave interaction) in the nonlinear excitation of parasitic modes at the fundamental is analyzed. The parallels between this set of events and events that take place in the prey–predator theory are discussed.

1.
V. A.
Fyagin
,
A. V.
Gaponov
,
M. I.
Petelin
, and
V. K.
Yulpatov
,
IEEE Trans. Microwave Theory Tech.
25
(
6
),
514
(
1977
).
2.
M. K. A.
Thumm
,
G. G.
Denisov
,
K.
Sakamoto
, and
M. Q.
Tran
,
Nucl. Fusion
59
,
073001
(
2019
).
3.
M. A.
Moiseev
and
G. S.
Nusinovich
,
Radiophys. Quantum Electron.
17
,
1305
(
1974
).
4.
G. S.
Nusinovich
,
Int. J. Electron.
51
,
457
(
1981
).
5.
G. S.
Nusinovich
,
Radiophys. Quantum Electron.
19
(
12
),
1301
(
1976
).
6.
L. A.
Weinstein
,
High-Power Electronics
(
Nauka
,
Moscow
,
1969
) (in Russian).
7.
W. E.
Lamb
,
Lectures in Quantum Optics and Electronics
, edited by
C.
DeWitt
,
A.
Blandin
, and
C.
Cohen-Tannoudji
(
Gordon and Breach
,
New York
,
1965
).
8.
V. E.
Zapevalov
and
G. S.
Nusinovich
,
Radio Eng. Electron. Phys.
30
,
101
(
1985
).
9.
B.
Levush
and
T. M.
Antonsen
, Jr.
,
IEEE Trans. Plasma Sci.
18
,
260
(
1990
).
10.
G. P.
Saraph
,
T. M.
Antonsen
, Jr.
,
G. S.
Nusinovich
, and
B.
Levush
,
Phys. Fluids B
5
,
4473
(
1993
).
11.
I. G.
Zarnitsyna
and
G. S.
Nusinovich
,
Radiophys. Quantum Electron.
20
,
313
(
1977
).
12.
T.
Idehara
and
Y.
Shimizu
,
Phys. Plasmas
1
,
3145
(
1994
).
13.
T.
Saito
,
Y.
Tatematsu
,
Y.
Yamaguchi
,
S.
Ikeuchi
,
S.
Ogasawara
,
N.
Yamada
,
R.
Ikeda
,
I.
Ogawa
, and
T.
Idehara
,
Phys. Rev. Lett.
109
,
155001
(
2012
).
14.
O.
Plankin
and
E.
Semenov
,
Manual of ANGEL-2DS Software
(
IAP RAS
,
N. Novgorod
,
2011
).
15.
S.
Sabchevski
,
T.
Idehara
,
M.
Glyavin
,
I.
Ogawa
, and
S.
Mitsudo
,
Vacuum
77
,
519
(
2005
).
16.
P.
Sprangle
and
A. T.
Drobot
,
IEEE Trans. Microwave Theory Tech.
25
(
6
),
528
(
1977
).
17.
S. H.
Kao
,
C. C.
Chiu
, and
K. R.
Chu
,
Phys. Plasmas
19
,
023112
(
2012
).
18.
V. L.
Bratman
,
A. E.
Fedotov
, and
T.
Idehara
,
Int. J. Infrared Millimeter Waves
22
(
10
),
1409
(
2001
).
19.
J.
Maynard Smith
,
Models in Ecology
(
Cambridge University Press
,
1974
).
20.
V.
Volterra
,
Mem. Accad. Nazionale Lincei (ser. 6)
2
,
31
113
(
1926
).
21.
A. A.
Berryman
,
Ecology
73
(
5
),
1530
(
1992
).
22.
E. P.
Abramova
and
T. V.
Ryazanova
,
Comput. Res. Model.
11
(
3
),
515
(
2019
).
You do not currently have access to this content.