For the first time, a global model of electromagnetic pulse (EMP) emission connects charge separation in the laser target to quantitative measurements of the electromagnetic field. We present a frequency-domain dipole antenna model which predicts the quantity of charge accumulated in a laser target as well as the EMP amplitude and frequency. The model is validated against measurements from several high-intensity laser facilities, providing insight into target physics and informing the design of next-generation ultra-intense laser facilities. EMP amplitude is proportional to the total charge accumulated on the target, but we demonstrate that it is not directly affected by target charging time (and therefore the laser pulse duration), provided the charging time is shorter than the antenna characteristic time. We propose two independent methods for estimating the charging time based on the laser pulse duration. We also investigate the impact of target holder geometry on EMPs using cylindrical, conical, and helical holders.

1.
C. N.
Danson
,
C.
Haefner
,
J.
Bromage
,
T.
Butcher
,
J.-C. F.
Chanteloup
,
E. A.
Chowdhury
,
A.
Galvanauskas
,
L. A.
Gizzi
,
J.
Hein
,
D. I.
Hillier
 et al., “
Petawatt and exawatt class lasers worldwide
,”
High Power Laser Sci. Eng.
7
,
e54
(
2019
).
2.
J. S.
Pearlman
and
G. H.
Dahlbacka
, “
Emission of rf radiation from laser-produced
,”
J. Appl. Phys.
49
,
457
(
1978
).
3.
M. J.
Mead
,
D.
Neely
,
J.
Gauoin
,
R.
Heathcote
, and
P.
Patel
, “
Electromagnetic pulse generation within a petawatt laser target chamber
,”
Rev. Sci. Instrum.
75
,
4225
(
2004
).
4.
J.
Raimbourg
, “
Electromagnetic compatibility management for fast diagnostic design
,”
Rev. Sci. Instrum.
75
,
4234
4236
(
2004
).
5.
C.
Stoeckl
,
V. Yu.
Glebov
,
P. A.
Jaanimagi
,
J. P.
Knauer
,
D. D.
Meyerhofer
,
T. C.
Sangster
,
M.
Storm
,
S.
Sublett
,
W.
Theobald
,
M. H.
Key
 et al., “
Operation of target diagnostics in a petawatt laser environment
,”
Rev. Sci. Instrum.
77
,
10F506
(
2006
).
6.
J. L.
Remo
,
R. G.
Adams
, and
M. C.
Jones
, “
Atmospheric electromagnetic pulse propagation effects from thick targets in a terawatt laser target chamber
,”
Appl. Opt.
46
,
6166
6175
(
2007
).
7.
C. G.
Brown
, Jr.
,
A.
Throop
,
D.
Eder
, and
J.
Kimbrough
, “
Electromagnetic pulses at short-pulse laser facilities
,”
J. Phys.
112
,
032025
(
2008
).
8.
D. C.
Eder
,
A.
Throop
,
C. G.
Brown
, Jr.
,
J.
Kimbrough
,
M. L.
Stowell
,
D. A.
White
,
P.
Song
,
N.
Back
,
A.
MacPhee
,
H.
Chen
 et al., “
Mitigation of electromagnetic pulse (EMP) effects from short-pulse lasers and fusion neutrons
,”
Lawrence Livermore National Laboratory Report No. LLNL-TR-411183
(
2009
).
9.
J. E.
Bateman
and
M. J.
Mead
, “
Electromagnetic pulse generation in petawatt laser shots
,”
Technical Report No. RAL-TR-2012-005
(STFC Rutherford Appleton Laboratory, Oxford,
2012
).
10.
C. G.
Brown
, Jr.
,
T. J.
Clancy
,
D. C.
Eder
,
W.
Ferguson
, and
A. L.
Throop
, “
Analysis of electromagnetic pulse (EMP) measurements inthe National Ignition Facility's target bay and chamber
,”
J. Phys.
59
,
08012
(
2013
).
11.
S.
Kar
,
H.
Ahmed
,
R.
Prasad
,
M.
Cerchez
,
S.
Brauckmann
,
B.
Aurand
,
G.
Cantono
,
P.
Hadjisolomou
,
C. L. S.
Lewis
,
A.
Macchi
 et al., “
Guided post-acceleration of laser-driven ions by a miniature modular structure
,”
Nat. Commun.
7
,
10792
(
2016
).
12.
W.
Wang
,
H.
Cai
,
J.
Teng
,
J.
Chen
,
S.
He
,
L.
Shan
,
F.
Lu1
,
Y.
Wu
,
B.
Zhang
,
W.
Hong
 et al., “
Efficient production of strong magnetic fields from ultraintense ultrashort laser pulse with capacitor-coil target
,”
Phys. Plasmas
25
,
083111
(
2018
).
13.
F.
Consoli
,
V. T.
Tikhonchuk
,
M.
Bardon
,
P.
Bradford
,
D. C.
Carroll
,
J.
Cikhardt
,
M.
Cipriani
,
R. J.
Clarke
,
T.
Cowan
,
R.
De Angelis
 et al., “
Laser produced electromagnetic pulses: Generation, detection and mitigation
High Power Laser Sci. Eng.
(in press) (
2020
).
14.
G.
Liao
,
Y.
Li
,
H.
Liu
,
G. G.
Scott
,
D.
Neely
,
Y.
Zhang
,
B.
Zhu
,
Z.
Zhang
,
C.
Armstrong
,
E.
Zemaityte
 et al., “
Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils
,”
Proc. Natl. Acad. Sci.
116
,
3994
3999
(
2019
).
15.
H.
Liu
,
G.-Q.
Liao
,
Y.-H.
Zhang
,
B.-J.
Zhu
,
Z.
Zhang
,
Y.-T.
Li
,
G. G.
Scott
,
D. R.
Rusby
,
C.
Armstrong
,
E.
Zemaityte
,
D. C.
Carroll
,
S.
Astbury
,
P.
Bradford
,
N. C.
Woolsey
,
P.
McKenna
, and
D.
Neely
, “
Cherenkov radiation-based optical fibre diagnostics of fast electrons generated in intense laser-plasma interactions
,”
Rev. Sci. Instrum.
89
,
083302
(
2018
).
16.
H.
Liu
,
G.-Q.
Liao
,
Y.-H.
Zhang
,
B.-J.
Zhu
,
Z.
Zhang
,
Y.-T.
Li
,
G. G.
Scott
,
D.
Rusby
,
C.
Armstrong
,
E.
Zemaityte
,
P.
Bradford
,
N.
Woolsey
,
P.
Huggard
,
P.
McKenna
,
D.
Neely
 et al., “
Study of backward terahertz radiation from intense picosecond laser-solid interactions using a multichannel calorimeter system
,”
High Power Laser Sci. Eng.
7
,
e6
(
2019
).
17.
K.
Quinn
,
P. A.
Wilson
,
C. A.
Cecchetti
,
B.
Ramakrishna
,
L.
Romagnani
,
G.
Sarri
,
L.
Lancia
,
J.
Fuchs
,
A.
Pipahl
,
T.
Toncian
 et al., “
Laser-driven ultrafast field propagation on solid surfaces
,”
Phys. Rev. Lett.
102
,
194801
(
2009
).
18.
J.
Cikhardt
,
J.
Krása
,
M.
De Marco
,
M.
Pfeifer
,
A.
Velyhan
,
E.
Krouský
,
B.
Cikhardtová
,
D.
Klír
,
K.
Rezáč
,
J.
Ullschmied
,
J.
Skála
,
P.
Kubeš
, and
J.
Kravárik
, “
Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS
,”
Rev. Sci. Instrum.
85
,
103507
(
2014
).
19.
J.-L.
Dubois
,
F.
Lubrano-Lavaderci
,
D.
Raffestin
,
J.
Ribolzi
,
J.
Gazave
,
A.
Compant La Fontaine
,
E.
d'Humières
,
S.
Hulin
,
Ph.
Nicolaï
,
A.
Poyé
, and
V. T.
Tikhonchuk
, “
Target charging in short-pulse-laser-plasma experiments
,”
Phys. Rev. E
89
,
013102
(
2014
).
20.
A.
Poyé
,
S.
Hulin
,
M.
Bailly-Grandvaux
,
J.-L.
Dubois
,
J.
Ribolzi
,
D.
Raffestin
,
M.
Bardon
,
F.
Lubrano-Lavaderci
,
E.
D'Humières
,
J. J.
Santos
,
Ph.
Nicolaï
, and
V.
Tikhonchuk
, “
Physics of giant electromagnetic pulse generation in short-pulse laser experiments
,”
Phys. Rev. E
91
,
043106
(
2015
);
A.
Poyé
,
S.
Hulin
,
M.
Bailly-Grandvaux
,
J.-L.
Dubois
,
J.
Ribolzi
,
D.
Raffestin
,
M.
Bardon
,
F.
Lubrano-Lavaderci
,
E.
D'Humières
,
J. J.
Santos
,
Ph.
Nicolaï
, and
V.
Tikhonchuk
,
Phys. Rev. E
97
,
019903
(
2018
).
[PubMed]
21.
J. J.
Santos
,
M.
Bailly-Grandvaux
,
L.
Giuffrida
,
P.
Forestier-Colleoni
,
S.
Fujioka
,
Z.
Zhang
,
P.
Korneev
,
R.
Bouillaud
,
S.
Dorard
,
D.
Batani
,
M.
Chevrot
 et al., “
Laser-driven platform for generation and characterization of strong quasi-static magnetic fields
,”
New J. Phys.
17
,
083051
(
2015
).
22.
F.
Consoli
,
R.
De Angelis
,
L.
Duvillaret
,
P. L.
Andreoli
,
M.
Cipriani
,
G.
Cristofari
,
G.
Di Giorgio
,
F.
Ingenito
, and
C.
Verona
, “
Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime
,”
Sci. Rep.
6
,
27889
(
2016
).
23.
P.
Rączka
,
J.-L.
Dubois
,
S.
Hulin
,
V.
Tikhonchuk
,
M.
Rosiński
,
A.
Zaraś-Szydłowska
, and
J.
Badziak
, “
Strong electromagnetic pulses generated in high-intensity short-pulse laser interactions with thin foil targets
,”
Laser Part. Beams
35
,
677
686
(
2017
).
24.
T. S.
Robinson
,
F.
Consoli
,
S.
Giltrap
,
S. J.
Eardley
,
G. S.
Hicks
,
E. J.
Ditter
,
O.
Ettlinger
,
N. H.
Stuart
,
M.
Notley
,
R.
De Angelis
,
Z.
Najmudin
, and
R. A.
Smith
, “
Low-noise time-resolved optical sensing of electromagnetic pulses from petawatt laser-matter interactions
,”
Sci. Rep.
7
,
983
(
2017
).
25.
V. T.
Tikhonchuk
,
M.
Bailly-Grandvaux
,
J. J.
Santos
, and
A.
Poyé
, “
Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly
,”
Phys. Rev. E
96
,
023202
(
2017
).
26.
J.
Krása
,
M.
De Marco
,
J.
Cikhardt
,
M.
Pfeifer
,
A.
Velyhan
,
D.
Klír
,
K.
Řezáč
,
J.
Limpouch
,
E.
Krouský
, and
J.
Dostál
, “
Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation
,”
Plasma Phys. Controlled Fusion
59
,
065007
(
2017
).
27.
P.
Bradford
,
N. C.
Woolsey
,
G. G.
Scott
,
G.
Liao
,
H.
Liu
,
Y.
Zhang
,
B.
Zhu
,
C.
Armstrong
,
S.
Astbury
,
C.
Brenner
 et al., “
EMP control and characterization on high-power laser systems
,”
High Power Laser Sci. Eng.
6
,
e21
(
2018
).
28.
J. S.
Pearlman
and
G. H.
Dahlbacka
, “
Charge separation and target voltages in laser-produced plasmas
,”
J. Appl. Phys.
31
,
414
(
1977
).
29.
A.
Poyé
,
J.-L.
Dubois
,
F.
Lubrano-Lavaderci
,
E.
D'Humières
,
M.
Bardon
,
S.
Hulin
,
M.
Bailly-Grandvaux
,
J.
Ribolzi
,
D.
Raffestin
,
J. J.
Santos
,
Ph.
Nicolaï
, and
V.
Tikhonchuk
, “
Dynamic model of target charging by short laser pulse interactions
,”
Phys. Rev. E
92
,
043107
(
2015
).
30.
A.
Poyé
,
S.
Hulin
,
J.
Ribolzi
,
M.
Bailly-Grandvaux
,
F.
Lubrano-Lavaderci
,
M.
Bardon
,
D.
Raffestin
,
J. J.
Santos
, and
V.
Tikhonchuk
, “
Thin target charging in short laser pulse interactions
,”
Phys. Rev. E
98
,
033201
(
2018
).
31.
H.
Ahmed
,
S.
Kar
,
G.
Cantono
,
P.
Hadjisolomou
,
A.
Poye
,
D.
Gwynne
,
C. L. S.
Lewis
,
A.
Macchi
,
K.
Naughton
,
G.
Nersisyan
,
V.
Tikhonchuk
,
O.
Willi
, and
M.
Borghesi
, “
Efficient post-acceleration of protons in helical coil targets driven by sub-ps laser pulses
,”
Sci. Rep.
7
,
10891
(
2017
).
32.
E.
Aktan
,
H.
Ahmed
,
B.
Aurand
,
M.
Cerchez
,
A.
Poyé
,
P.
Hadjisolomou
,
M.
Borghesi
,
S.
Kar
,
O.
Willi
, and
R.
Prasad
, “
Parametric study of a high amplitude electromagnetic pulse driven by an intense laser
,”
Phys. Plasmas
26
,
070701
(
2019
).
33.
M. A.
Heald
and
J. B.
Marion
,
Classical Electromagnetic Radiation
, 3rd ed. (
Saunders College Publishing
,
Fort Worth
,
1995
).
34.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1999
).
35.
Y.
Xia
,
F.
Zhang
,
H.
Cai
,
W.
Zhou
,
C.
Tian
,
B.
Zhang
,
D.
Liu
,
T.
Yi
,
Y.
Xu
,
F.
Wang
,
T.
Li
, and
S.
Zhu
, “
Analysis of electromagnetic pulses generation from laser coupling with polymer targets: Effect of metal content in target
,”
Matter Radiat. Extremes
5
,
017401
(
2020
).
36.
C. B.
Edwards
,
C. N.
Danson
,
M. H. R.
Hutchinson
,
D.
Neely
, and
B.
Wyborn
, “
200TW upgrade of the Vulcan Nd:glass laser facility
,”
AIP Conf. Proc.
426
,
485
(
1998
).
37.
I.
Musgrave
,
W.
Shaikh
,
M.
Galimberti
,
A.
Boyle
,
C.
Hernandez-Gomez
,
K.
Lancaster
, and
R.
Heathcote
, “
Picosecond optical parametric chirped pulse amplifier as a preamplifier to generate high-energy seed pulses for contrast enhancement
,”
Appl. Opt.
49
,
6558
(
2010
).
39.
P.
Puyuelo-Valdes
,
J. L.
Henares
,
F.
Hannachi
,
T.
Ceccotti
,
J.
Domange
,
M.
Ehret
,
E.
d'Humieres
,
L.
Lancia
,
J.-R.
Marquès
,
X.
Ribeyre
,
J. J.
Santos
,
V.
Tikhonchuk
, and
M.
Tarisien
, “
Proton acceleration by collisionless shocks using a supersonic H2 gas-jet target and high-power infrared laser pulses
,”
Phys. Plasmas
26
,
123109
(
2019
).
40.
R.
Fabbro
,
B.
Faral
,
J.
Virmont
,
F.
Cottet
,
J. P.
Romain
, and
H.
Pépin
, “
Experimental study of ablation pressures and target velocities obtained in 0.26 μm wavelength laser experiments in planar geometry
,”
Phys. Fluids
28
,
1463
(
1985
).
41.
F. N.
Beg
,
A. R.
Bell
,
A. E.
Dangor
,
C. N.
Danson
,
A. P.
Fews
,
M. E.
Glinsky
,
B. A.
Hammel
,
P.
Lee
,
P. A.
Norreys
, and
M.
Tatarakis
, “
A study of picosecond laser-solid interactions up to 1019 W cm−2
,”
Phys. Plasmas
4
,
447
(
1997
).
42.
S. C.
Wilks
,
W. L.
Kruer
,
M.
Tabak
, and
A. B.
Langdon
, “
Absorption of ultra-intense laser pulses
,”
Phys. Rev. Lett.
69
,
1383
(
1992
).
43.
P.
Gibbon
,
Short Pulse Laser Interaction with Matter: An Introduction
(
World Science Publication
,
London
,
2005
).
45.
K.
Kanaya
and
S.
Okayama
, “
Penetration and energy-loss theory of electrons in solid targets
,”
J. Phys. D
5
,
43
(
1972
).
You do not currently have access to this content.