The effect of an initially uniform magnetic field of arbitrary orientation on the Richtmyer–Meshkov instability in Hall-magnetohydrodynamics (MHD) and ideal MHD is considered. Attention is restricted to the case where the initial density interface has a single-mode sinusoidal perturbation in amplitude and is accelerated by a shock traveling perpendicular to the interface. An incompressible Hall-MHD model for this flow is developed by solving the relevant impulse-driven linearized initial value problem. The ideal MHD theory is naturally obtained by taking the limit of vanishing ion skin depth. It is shown that the out-of-plane magnetic field component normal to both the impulse and the interface perturbation does not affect the evolution of the flow. For all field orientations other than strictly out-of-plane, the growth of interface perturbations is suppressed. However, the suppression is most effective for near tangential fields but becomes less effective with increasing ion skin depth and Larmor radius. The modeled suppression mechanism is transport of vorticity along magnetic field lines via Alfvén fronts in ideal MHD, and via a dispersive wave system in Hall-MHD. Oscillation of the interface growth rate is caused by a continuous phase change of the induced velocities at the interface due to vorticity transport parallel to the perturbation direction in ideal MHD, while it can also result from interfacial vorticity production associated with the ion cyclotron effect in Hall-MHD with a finite Larmor radius. The limiting flow behavior of a large ion-skin-depth is explored. To assess the accuracy and appropriateness of the incompressible model, its ideal MHD predictions are compared to the results of the corresponding shock-driven nonlinear compressible simulations.

1.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
,
297
319
(
1960
).
2.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
,
101
104
(
1972
).
3.
D.
Arnett
, “
The role of mixing in astrophysics
,”
Astrophys. J. Suppl. Ser.
127
,
213
(
2000
).
4.
A. M.
Khokhlov
,
E. S.
Oran
, and
G. O.
Thomas
, “
Numerical simulation of deflagration-to-detonation transition: The role of shock–flame interactions in turbulent flames
,”
Combust. Flame
117
,
323
339
(
1999
).
5.
J.
Yang
,
T.
Kubota
, and
E. E.
Zukoski
, “
Applications of shock-induced mixing to supersonic combustion
,”
AIAA J.
31
,
854
862
(
1993
).
6.
M.
Brouillette
, “
The Richtmyer-Meshkov instability
,”
Annu. Rev. Fluid Mech.
34
,
445
468
(
2002
).
7.
S. H.
Glenzer
,
B. J.
MacGowan
,
P.
Michel
,
N. B.
Meezan
,
L. J.
Suter
,
S. N.
Dixit
,
J. L.
Kline
,
G. A.
Kyrala
,
D. K.
Bradley
,
D. A.
Callahan
,
E. L.
Dewald
,
L.
Divol
,
E.
Dzenitis
,
M. J.
Edwards
,
A. V.
Hamza
,
C. A.
Haynam
,
D. E.
Hinkel
,
D. H.
Kalantar
,
J. D.
Kilkenny
,
O. L.
Landen
,
J. D.
Lindl
,
S.
LePape
,
J. D.
Moody
,
A.
Nikroo
,
T.
Parham
,
M. B.
Schneider
,
R. P. J.
Town
,
P.
Wegner
,
K.
Widmann
,
P.
Whitman
,
B. K. F.
Young
,
B.
Van Wonterghem
,
L. J.
Atherton
, and
E. I.
Moses
, “
Symmetric inertial confinement fusion implosions at ultra-high laser energies
,”
Science
327
,
1228
(
2010
).
8.
J. D.
Lindl
,
R. L.
McCrory
, and
E. M.
Campbell
, “
Progress toward ignition and burn propagation in inertial confinement fusion
,”
Phys. Today
45
(
9
),
32
40
(
1992
).
9.
N. E.
Lanier
,
C. W.
Barnes
,
S. H.
Batha
,
R. D.
Day
,
G. R.
Magelssen
,
J. M.
Scott
,
A. M.
Dunne
,
K. W.
Parker
, and
S. D.
Rothman
, “
Multimode seeded Richtmyer-Meshkov mixing in a convergent, compressible, miscible plasma system
,”
Phys. Plasmas
10
,
1816
(
2003
).
10.
S. H. R.
Hosseini
and
K.
Takayama
, “
Experimental study of Richtmyer-Meshkov instability induced by cylindrical shock waves
,”
Phys. Fluids
17
,
084101
(
2005
).
11.
K. O.
Mikaelian
, “
Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified cylindrical shells
,”
Phys. Fluids
17
,
094105
(
2005
).
12.
M.
Lombardini
,
D. I.
Pullin
, and
D. I.
Meiron
, “
Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth
,”
J. Fluid Mech.
748
,
85
112
(
2014
).
13.
M.
Lombardini
,
D. I.
Pullin
, and
D. I.
Meiron
, “
Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics
,”
J. Fluid Mech.
748
,
113
142
(
2014
).
14.
A.
Bakhsh
and
R.
Samtaney
, “
Incompressible models of magnetohydrodynamic Richtmyer-Meshkov instability in cylindrical geometry
,”
Phys. Rev. Fluids
4
,
063906
(
2019
).
15.
A.
López Ortega
,
M.
Lombardini
,
D. I.
Pullin
, and
D. I.
Meiron
, “
Numerical simulations of the Richtmyer-Meshkov instability in solid-vacuum interfaces using calibrated plasticity laws
,”
Phys. Rev. E
89
,
033018
(
2014
).
16.
A.
López Ortega
,
M.
Lombardini
,
P. T.
Barton
,
D. I.
Pullin
, and
D. I.
Meiron
, “
Richtmyer-Meshkov instability for elastic-plastic solids in converging geometries
,”
J. Mech. Phys. Solids
76
,
291
324
(
2015
).
17.
M.-E.
Manuel
,
C. K.
Li
,
F. H.
Séguin
,
J.
Frenje
,
D. T.
Casey
,
R. D.
Petrasso
,
S. X.
Hu
,
R.
Betti
,
J. D.
Hager
,
D. D.
Meyerhofer
 et al, “
First measurements of rayleigh-taylor-induced magnetic fields in laser-produced plasmas
,”
Phys. Rev. Lett.
108
,
255006
(
2012
).
18.
F. H.
Séguin
,
C. K.
Li
,
M.-E.
Manuel
,
H. G.
Rinderknecht
,
N.
Sinenian
,
J. A.
Frenje
,
J. R.
Rygg
,
D. G.
Hicks
,
R. D.
Petrasso
,
J.
Delettrez
 et al, “
Time evolution of filamentation and self-generated fields in the coronae of directly driven inertial-confinement fusion capsules
,”
Phys. Plasmas
19
,
012701
(
2012
).
19.
I. V.
Igumenshchev
,
A. B.
Zylstra
,
C. K.
Li
,
P. M.
Nilson
,
V. N.
Goncharov
, and
R. D.
Petrasso
, “
Self-generated magnetic fields in direct-drive implosion experiments
,”
Phys. Plasmas
21
,
062707
(
2014
).
20.
D.
Bond
,
V.
Wheatley
,
R.
Samtaney
, and
D. I.
Pullin
, “
Richtmyer-Meshkov instability of a thermal interface in a two-fluid plasma
,”
J. Fluid Mech.
833
,
332
363
(
2017
).
21.
M.
Hohenberger
,
P.-Y.
Chang
,
G.
Fiskel
,
J. P.
Knauer
,
R.
Betti
,
F. J.
Marshall
,
D. D.
Meyerhofer
,
F. H.
Séguin
, and
R. D.
Petrasso
, “
Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser
,”
Phys. Plasmas
19
,
056306
(
2012
).
22.
L. J.
Perkins
,
B. G.
Logan
,
G. B.
Zimmerman
, and
C. J.
Werner
, “
Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields
,”
Phys. Plasmas
20
,
072708
(
2013
).
23.
R.
Samtaney
, “
Suppression of the Richtmyer-Meshkov instability in the presence of a magnetic field
,”
Phys. Fluids
15
,
L53
L56
(
2003
).
24.
V.
Wheatley
,
D. I.
Pullin
, and
R.
Samtaney
, “
Stability of an impulsively accelerated density interface in magnetohydrodynamics
,”
Phys. Rev. Lett.
95
,
125002
(
2005
).
25.
V.
Wheatley
,
R.
Samtaney
, and
D. I.
Pullin
, “
The Richtmyer-Meshkov instability in magnetohydrodynamics
,”
Phys. Fluids
21
,
082102
082113
(
2009
).
26.
J.
Cao
,
Z.
Wu
,
H.
Ren
, and
D.
Li
, “
Effects of shear flow and transverse magnetic field on Richtmyer-Meshkov instability
,”
Phys. Plasmas
15
,
042102
(
2008
).
27.
V.
Wheatley
,
R.
Samtaney
,
D. I.
Pullin
, and
R. M.
Gehre
, “
The transverse field Richtmyer-Meshkov instability in magnetohydrodynamics
,”
Phys. Fluids
26
,
016102
016117
(
2014
).
28.
W.
Mostert
,
V.
Wheatley
,
R.
Samtaney
, and
D. I.
Pullin
, “
Effects of seed magnetic fields on magnetohydrodynamic implosion structure and dynamics
,”
Phys. Fluids
26
,
126102
(
2014
).
29.
W.
Mostert
,
V.
Wheatley
,
R.
Samtaney
, and
D. I.
Pullin
, “
Effects of magnetic fields on magnetohydrodynamic cylindrical and spherical Richtmyer-Meshkov instability
,”
Phys. Fluids
27
,
104102
(
2015
).
30.
N.
Shen
,
D. I.
Pullin
,
V.
Wheatley
, and
R.
Samtaney
, “
Impulse-driven Richtmyer-Meshkov instability in Hall-magnetohydrodynamics
,”
Phys. Rev. Fluids
4
,
103902
(
2019
).
31.
N.
Shen
,
Y.
Li
,
D. I.
Pullin
,
R.
Samtaney
, and
V.
Wheatley
, “
On the magnetohydrodynamic limits of the ideal two-fluid plasma equations
,”
Phys. Plasmas
25
,
122113
(
2018
).
32.
J. D.
Huba
, “
Theory and simulation of a high-frequency magnetic drift wave
,”
Phys. Fluids B: Plasma Phys.
3
,
3217
3225
(
1991
).
33.
J. D.
Huba
, “
Hall magnetohydrodynamics-a tutorial
,”
Space Plasma Simulation
(
Springer
,
2003
), pp.
166
192
.
34.
E.
Hameiri
,
A.
Ishizawa
, and
A.
Ishida
, “
Waves in the Hall-magnetohydrodynamics model
,”
Phys. Plasmas
12
,
072109
(
2005
).
35.
V.
Wheatley
,
R. M.
Gehre
,
R.
Samtaney
, and
D. I.
Pullin
,
The Magnetohydrodynamic Richtmyer-Meshkov Instability: The Oblique Field Case
(
Springer
,
2013
), pp.
1107
1112
.
36.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
(
Courier Corporation
,
1965
), Vol.
55
.
37.
D. P.
Gaver
, Jr.
, “
Observing stochastic processes, and approximate transform inversion
,”
Oper. Res.
14
,
444
459
(
1966
).
38.
H.
Stehfest
, “
Algorithm 368: Numerical inversion of Laplace transforms, [d5]
,”
Commun. ACM
13
,
47
49
(
1970
).
39.
J.
Abate
and
W.
Whitt
, “
A unified framework for numerically inverting Laplace transforms
,”
Informs J. Comput.
18
,
408
421
(
2006
).
40.
R.
Samtaney
,
P.
Colella
,
T. J.
Ligocki
,
D. F.
Martin
, and
S. C.
Jardin
, “
An adaptive mesh semi-implicit conservative unsplit method for resistive MHD
,”
J. Phys.: Conf. Ser.
16
,
40
(
2005
).
You do not currently have access to this content.