Electrostatic flow-driven instabilities have been predicted in the presheath region of low-temperature plasmas for both ion and electron rich sheaths. The ion-acoustic fluctuations that arise from these instabilities can influence transport through an enhanced collision rate. In this work, ion fluctuation spectra were measured using laser-induced fluorescence (LIF) in the presheath region for both sheath polarities. The non-invasive nature of LIF compared to that of probes is particularly valuable for these measurements because the sheath and presheath around a probe may generate their own flow-driven instabilities, which obscure the measurement. Measurements were made using a recently implemented field programmable gate array-based system able to measure ion fluctuation spectra up to 1 MHz using a two-point correlation function technique. Narrow bandwidth ion fluctuations were observed near 0.46fpi (460 kHz) for both sheath polarities, where fpi is the ion plasma frequency. The observed fluctuations were significantly stronger in the electron sheath case and were observed over a larger volume of plasma. Fluctuations were measured in the ion sheath case at locations far enough from the sheath that linear theory predicts stability, suggesting that ion-acoustic instabilities generated in the relatively small unstable region near the boundary reflect from the sheath and perturb a much larger volume of the plasma. This is expected to affect probes with both ion and electron rich sheaths, meaning any dc biased probe may effectively act as an ion-acoustic wave antenna. These measurements are consistent with the recent theory and particle-in-cell results.

1.
S. D.
Baalrud
,
Plasma Sources Sci. Technol.
25
,
025008
(
2016
).
2.
B.
Scheiner
,
S. D.
Baalrud
,
B. T.
Yee
,
M. M.
Hopkins
, and
E. V.
Barnat
,
Phys. Plasmas
22
,
123520
(
2015
).
3.
C.-S.
Yip
,
N.
Hershkowitz
, and
G.
Severn
,
Plasma Sources Sci. Technol.
24
,
015018
(
2014
).
4.
J.
Glanz
and
N.
Hershkowitz
,
Plasma Phys.
23
,
325
(
1981
).
5.
B. T.
Yee
,
B.
Scheiner
,
S. D.
Baalrud
,
E. V.
Barnat
, and
M. M.
Hopkins
,
Plasma Sources Sci. Technol.
26
,
025009
(
2017
).
6.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
Wiley
,
Hoboken, NJ
,
2005
), Chap. 6, pp.
165
172
.
7.
K.-U.
Riemann
,
Phys. Plasmas
4
,
4158
(
1997
).
8.
L.
Oksuz
and
N.
Hershkowitz
,
Phys. Rev. Lett.
89
,
145001
(
2002
).
9.
S. D.
Baalrud
and
C. C.
Hegna
,
Plasma Sources Sci. Technol.
20
,
025013
(
2011
).
10.
S. D.
Baalrud
,
J. D.
Callen
, and
C. C.
Hegna
,
Phys. Rev. Lett.
102
,
245005
(
2009
).
11.
N.
Claire
,
G.
Bachet
,
U.
Stroth
, and
F.
Doveil
,
Phys. Plasmas
13
,
062103
(
2006
).
12.
S. D.
Baalrud
,
N.
Hershkowitz
, and
B.
Longmier
,
Phys. Plasmas
14
,
042109
(
2007
).
13.
S. J.
Zweben
,
R. J.
Maqueda
,
A. L.
Roquemore
,
C. E.
Bush
,
R.
Kaita
,
R. J.
Marsala
,
Y.
Raitses
,
R. H.
Cohen
, and
D. D.
Ryutov
,
Plasma Phys. Controlled Fusion
51
,
105012
(
2009
).
14.
C.
Theiler
,
I.
Furno
,
J.
Loizu
, and
A.
Fasoli
,
Phys. Rev. Lett.
108
,
065005
(
2012
).
15.
C.-S.
Yip
,
J. P.
Sheehan
,
N.
Hershkowitz
, and
G.
Severn
,
Plasma Sources Sci. Technol.
22
,
065002
(
2013
).
16.
V. I.
Demidov
,
S. V.
Ratynskaia
, and
K.
Rypdal
,
Rev. Sci. Instrum.
73
,
3409
(
2002
).
17.
G. F.
Matthews
,
Plasma Phys. Controlled Fusion
36
,
1595
(
1994
).
18.
S.
Sharma
,
D.
Gahan
,
P.
Scullin
,
J.
Doyle
,
J.
Lennon
,
R. K.
Vijayaraghavan
,
S.
Daniels
, and
M. B.
Hopkins
,
Rev. Sci. Instrum.
87
,
043511
(
2016
).
19.
H. M.
Mott-Smith
and
I.
Langmuir
,
Phys. Rev.
28
,
727
(
1926
).
20.
N.
Hershkowitz
,
Phys. Plasmas
12
,
055502
(
2005
).
21.
22.
F. F.
Chen
,
Plasma Sources Sci. Technol.
15
,
773
(
2006
).
23.
B.
Scheiner
,
S. D.
Baalrud
,
M. M.
Hopkins
,
B. T.
Yee
, and
E. V.
Barnat
,
Phys. Plasmas
23
,
083510
(
2016
).
24.
R.
Hood
,
B.
Scheiner
,
S. D.
Baalrud
,
M. M.
Hopkins
,
E. V.
Barnat
,
B. T.
Yee
,
R. L.
Merlino
, and
F.
Skiff
,
Phys. Plasmas
23
,
113503
(
2016
).
25.
J. P.
Sheehan
,
Y.
Raitses
,
N.
Hershkowitz
,
I.
Kaganovich
, and
N. J.
Fisch
,
Phys. Plasmas
18
,
073501
(
2011
).
26.
D. N.
Hill
,
S.
Fornaca
, and
M. G.
Wickham
,
Rev. Sci. Instrum.
54
,
309
(
1983
).
27.
A.
Diallo
and
F.
Skiff
,
Phys. Plasmas
12
,
110701
(
2005
).
28.
I. U.
Uzun-Kaymak
and
F.
Skiff
,
Phys. Plasmas
13
,
112108
(
2006
).
29.
S.
Mattingly
and
F.
Skiff
,
Phys. Plasmas
24
,
090703
(
2017
).
30.
S. W.
Mattingly
and
F.
Skiff
,
Rev. Sci. Instrum.
89
,
043508
(
2018
).
31.
F.
Chu
and
F.
Skiff
,
Phys. Plasmas
25
,
013506
(
2018
).
32.
A.
Kramida
,
Y.
Ralchenko
, and
J.
Reader
, and
NIST ASD Team
,
NIST Atomic Spectra Database (Ver. 5.6.1)
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2018
).
33.
B.
Bertotti
,
M.
Brambilla
, and
A.
Sestero
,
Phys. Fluids
9
,
1428
(
1966
).
34.
O.
Ishihara
,
I.
Alexeff
,
H. J.
Doucet
, and
W. D.
Jones
,
Phys. Fluids
21
,
2211
(
1978
).
35.
J.
Berumen
and
F.
Skiff
,
Phys. Plasmas
25
,
122102
(
2018
).
You do not currently have access to this content.