The nonlinear interaction between bulk point vortices and a vortex sheet with initially nonuniform velocity shear is investigated theoretically and numerically by use of the vortex method, taking the incompressible Richtmyer–Meshkov instability as an example. As the point vortices approach the interface, i.e., a nonuniform vortex sheet, they increase the local sheet strength of the vortex sheet, which causes different types of interface deformation depending on the sign of their circulation of point vortices. For example, when the circulation of a point vortex is the opposite sign of the local sheet strength, it induces a new type of vortex pair with an local enhanced sheet vortex. We refer to that as a pseudo-vortex pair in the current study. The pseudo-vortex pair creates a local satellite mushroom at the fully nonlinear stage. The obtained results indicate that the complexity of the interface structure is enhanced if the bulk vortices exist.

1.
W. W.
Willmarth
,
G.
Tryggvason
,
A.
Hirsa
, and
D.
Yu
, “
Vortex pair generation and interaction with a free surface
,”
Phys. Fluids A
1
,
170
172
(
1989
).
2.
S.
Fish
, “
Vortex dynamics in the presence of free surface waves
,”
Phys. Fluids A
3
,
504
506
(
1991
).
3.
J. G.
Telste
, “
Potential flow about two counter-rotating vortices approaching a free surface
,”
J. Fluid Mech.
201
,
259
278
(
1989
).
4.
P. A.
Tyvand
, “
On the interaction between a strong vortex pair and a free surface
,”
Phys. Fluids A
2
,
1624
1634
(
1990
).
5.
P. A.
Tyvand
, “
Motion of a vortex near a free surface
,”
J. Fluid Mech.
225
,
673
686
(
1991
).
6.
P. D.
Cummings
, “
The growth of wind waves estimated using a new irrotational finite amplitude water wave model
,”
J. Coastal Res.
14
,
1354
1362
(
1998
).
7.
J. W.
Miles
, “
On the generation of surface waves by shear flows
,”
J. Fluid Mech.
3
,
185
204
(
1957
).
8.
V. E.
Zakharov
,
S. I.
Badulin
,
V. V.
Geogjaev
, and
A. N.
Pushkarev
, “
Weak-turbulent theory of wind-driven sea
,”
Earth Space Sci.
6
,
540
556
(
2019
).
9.
E.
Tochimoto
,
S.
Yokota
,
H.
Niino
, and
W.
Yanase
, “
Mesoscale convective vortex that causes tornado-like vortices over the sea: A potential risk to maritime traffic
,”
Mon. Weather Rev.
147
,
1989
2007
(
2019
).
10.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
,
297
319
(
1960
).
11.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Sov. Fluid Dyn.
4
,
101
108
(
1972
).
12.
R. Y. T.
Inoue
and
S.
Inutsuka
, “
Turbulence and magnetic field amplification in supernova remnants: Interactions between a strong shock wave and multiphase interstellar medium
,”
Astrophys. J.
695
,
825
(
2009
).
13.
T.
Sano
,
K.
Nishihara
,
C.
Matsuoka
, and
T.
Inoue
, “
Magnetic field amplification associated with the Richtmyer–Meshkov instability
,”
Astrophys. J.
758
,
126
(
2012
).
14.
T.
Sano
,
T.
Inoue
, and
K.
Nishihara
, “
Critical magnetic field strength for suppression of the Richtmyer–Meshkov instability in plasmas
,”
Phys. Rev. Lett.
111
,
205001
(
2013
).
15.
C.
Matsuoka
,
K.
Nishihara
, and
T.
Sano
, “
Nonlinear dynamics of non-uniform current-vortex sheets in magnetohydrodynamic flows
,”
J. Nonlinear Sci.
27
,
531
572
(
2017
).
16.
S. I.
Abarzhi
,
A. K.
Bhowmick
,
A.
Naveh
,
A.
Pandian
,
N. C.
Swisher
,
R. F.
Stellingwerf
, and
W. D.
Arnett
, “
Supernova, nuclear synthesis, fluid instabilities, and interfacial mixing
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
18184
18192
(
2019
).
17.
G.
Dimonte
,
C. E.
Frerking
,
M.
Schneider
, and
B.
Remington
, “
Richtmyer–Meshkov instability with strong radiatively driven shocks
,”
Phys. Plasmas
3
,
614
630
(
1996
).
18.
R. L.
Holmes
,
G.
Dimonte
,
B.
Fryxell
,
M. L.
Gittings
,
J. W. W.
Grove
,
H.
Schneider
,
D.
Sharp
,
A. L.
Velikovich
,
R.
Weaver
, and
Q.
Zang
, “
Richtmyer–Meshkov instability growth: Experiment, simulation and theory
,”
J. Fluid Mech.
389
,
55
79
(
1999
).
19.
L. H. G.
Jourdan
and
M.
Billiotte
, “
Density evolution within a shock accelerated gaseous interface
,”
Phys. Rev. Lett.
78
,
452
455
(
1997
).
20.
M. T. F.
Poggi
and
G.
Rodriguez
, “
Velocity measurements in turbulent gaseous mixtures induced by Richtmyer–Meshkov instability
,”
Phys. Fluids
10
,
2698
2700
(
1998
).
21.
Y.
Zhou
, “
Rayleigh-Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I
,”
Phys. Rep.
720-722
,
1
136
(
2017
).
22.
A. L.
Velikovich
,
J. G.
Wouchuk
,
C. H. R.
de Lira
,
N.
Melzler
,
S.
Zalesak
, and
A. J.
Schmitt
, “
Shock front distortion and Richtmyer–Meshkov-type growth caused by a small preshock nonuniformity
,”
Phys. Plasmas
14
,
072706
(
2007
).
23.
J. G.
Wouchuk
and
K.
Nishihara
, “
Asymptotic growth in the linear Richtmyer–Meshkov instability
,”
Phys. Plasmas
4
,
1028
1038
(
1997
).
24.
C.
Matsuoka
,
K.
Nishihara
, and
Y.
Fukuda
, “
Nonlinear evolution of an interface in the Richtmyer–Meshkov instability
,”
Phys. Rev. E
67
,
036301
(
2003
).
25.
J. G.
Wouchuk
,
C. H. R.
de Lira
, and
A. L.
Velikovich
, “
Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field
,”
Phys. Rev. E
79
,
066315
(
2009
).
26.
K.
Nishihara
,
J. G.
Wouchuk
,
C.
Matsuoka
,
R.
Ishizaki
, and
V. V.
Zhakhovskii
, “
Richtmyer–Meshkov instability: Theory of linear and nonlinear evolution
,”
Philos. Trans. R. Soc. A
368
,
1769
1807
(
2010
).
27.
F.
Cobos-Campos
and
J. G.
Wouchuk
, “
Analytic solution for the zero-order postshock profiles when an incident planar shock hits a planar contact surface
,”
Phys. Rev. E
100
,
033107
(
2019
).
28.
J. G.
Wouchuk
, “
Growth rate of the linear Richtmyer–Meshkov instability when a shock is reflected
,”
Phys. Rev. E
63
,
056303
(
2001
).
29.
G.
Fraley
, “
Rayleigh-Taylor stability for a normal shock wave-density discontinuity interaction
,”
Phys. Fluids
29
,
376
386
(
1986
).
30.
M.
Stanic
,
R. F.
Stellingwerf
,
J. T.
Cassibry
, and
S. I.
Abarzhi
, “
Scale coupling in Richtmyer–Meshkov flows induced by strong shocks
,”
Phys. Plasmas
19
,
082706
(
2012
).
31.
M.
Stanic
,
R. F.
Stellingwerf
,
J. T.
Cassibry
, and
S. I.
Abarzhi
, “
Non-uniform volumetric structures in Richtmyer–Meshkov flows
,”
Phys. Fluids
25
,
106107
(
2013
).
32.
M.
Vandenboomgaerde
,
D.
Souffland
,
C.
Mariani
,
L.
Biamino
,
G.
Jourdan
, and
L.
Houas
, “
An experimental and numerical investigation of the dependency on the initial conditions of the Richtmyer–Meshkov instability
,”
Phys. Fluids
26
,
024109
(
2014
).
33.
Z.
Dell
,
R. F.
Stellingwerf
, and
S. I.
Abarzhi
, “
Effect of initial perturbation amplitude on Richtmyer–Meshkov flows induced by strong shocks
,”
Phys. Plasmas
22
,
092711
(
2015
).
34.
F.
Cobos-Campos
and
J. G.
Wouchuk
, “
Analytical scalings of the linear Richtmyer–Meshkov instability when a shock is reflected
,”
Phys. Rev. E
93
,
053111
(
2016
).
35.
F.
Cobos-Campos
and
J. G.
Wouchuk
, “
Analytical scalings of the linear Richtmyer–Meshkov instability when a rarefaction is reflected
,”
Phys. Rev. E
96
,
013102
(
2017
).
36.
J. G.
Wouchuk
and
K.
Nishihara
, “
Linear perturbation growth at a shocked interface
,”
Phys. Plasmas
3
,
3761
3776
(
1996
).
37.
J.
Lindl
,
Inertia Confinement Fusion: The Quest for Ignition and High Gain Using Indirect Drive
(
Springer and AIP
,
New York
,
1997
).
38.
S.
Atzeni
and
J.
Meyer-ter-Vehn
,
The Physics of Inertial Fusion
(
Oxford Science Publications
,
Oxford
,
2004
).
39.
A.
Nikroo
and
D.
Woodhouse
, “
Bounce coating induced domes on glow discharge polymer coated shells
,”
Fusion Technol.
35
,
202
205
(
1999
).
40.
G.-H.
Cottet
and
P. D.
Koumoutsakos
,
Vortex Methods: Theory and Practice
(
Cambridge University Press
,
Cambridge
,
2000
).
41.
R.
Krasny
, “
A study of singularity formation in a vortex sheet by the point vortex approximation
,”
J. Fluid Mech.
167
,
65
93
(
1986
).
42.
R.
Krasny
, “
Computation of vortex sheet roll-up in the Trefftz plane
,”
J. Fluid Mech.
184
,
123
155
(
1987
).
43.
C.
Matsuoka
and
K.
Nishihara
, “
Vortex core dynamics and singularity formations in incompressible Richtmyer–Meshkov instability
,”
Phys. Rev. E
73
,
026304
(
2006
).
44.
C.
Matsuoka
and
K.
Nishihara
, “
Fully nonlinear evolution of a cylindrical vortex sheet in incompressible Richtmyer–Meshkov instability
,”
Phys. Rev. E
73
,
055304(R)
(
2006
).
45.
C.
Matsuoka
and
K.
Nishihara
, “
Analytical and numerical study on a vortex sheet in incompressible Richtmyer–Meshkov instability in cylindrical geometry
,”
Phys. Rev. E
74
,
066303
(
2006
).
46.
S.-I.
Sohn
,
D.
Yoon
, and
W.
Hwang
, “
Long-time simulations of the Kelvin–Helmholtz instability using an adaptive vortex method
,”
Phys. Rev. E
82
,
046711
(
2010
).
47.
S.-I.
Sohn
, “
Late-time vortex dynamics of Rayleigh–Taylor instability
,”
J. Phys. Soc. Jpn.
80
,
084401
(
2011
).
48.
H.
Lamb
,
Hydrodynamics
(
Dover
,
New York
,
1932
).
49.
P. K.
Newton
,
The N-Vortex Problem
(
Springer
,
New York
,
2000
).
50.
M. J.
Ablowitz
,
A. S.
Fokas
, and
Z. H.
Musslimani
, “
On a new non-local formulation of water waves
,”
J. Fluid Mech.
562
,
313
343
(
2006
).
51.
C. W.
Curtis
and
H.
Kalisch
, “
Vortex dynamics in nonlinear free surface flows
,”
Phys. Fluids
29
,
032101
(
2017
).
52.
N.
Zabusky
, “
Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh-Taylor and Richtmyer–Meshkov environments
,”
Annu. Rev. Fluid Mech.
31
,
495
536
(
1999
).
53.
Q.
Zhang
and
S. I.
Sohn
, “
An analytical nonlinear theory of Richtmyer–Meshkov instability
,”
Phys. Lett. A
212
,
149
155
(
1996
).
54.
Q.
Zhang
and
S. I.
Sohn
, “
Nonlinear theory of unstable fluid mixing driven by shock wave
,”
Phys. Fluids
9
,
1106
1124
(
1997
).
55.
K.
Mikaelian
, “
Freeze-out and the effect of compressibility in the Richtmyer–Meshkov instability
,”
Phys. Fluids
6
,
356
368
(
1994
).
56.
J. G.
Wouchuk
, “
Growth rate of the Richtmyer–Meshkov instability when a rarefaction is reflected
,”
Phys. Plasmas
8
,
2890
2907
(
2001
).
57.
G.
Birkhoff
, “
Helmholtz and Taylor instability
,”
Proc. Symp. Appl. Math. Soc.
13
,
55
76
(
1962
).
58.
N.
Rott
, “
Diffraction of a weak shock with vortex generation
,”
J. Fluid Mech.
1
,
111
128
(
1956
).
59.
P. G.
Saffman
,
Vortex Dynamics
(
Cambridge University Press
,
Cambridge
,
1992
).
60.
D. I.
Pullin
, “
Numerical studies of surface-tension effects in nonlinear Kelvin-Helmholtz and Rayleigh–Taylor instability
,”
J. Fluid Mech.
119
,
507
532
(
1982
).
61.
G.
Baker
,
D. I.
Meiron
, and
S. A.
Orszag
, “
Generalized vortex methods for free surface flow problems
,”
J. Fluid Mech.
123
,
477
501
(
1982
).
62.
R. M.
Kerr
, “
Simulation of Rayleigh–Taylor flows using vortex blobs
,”
J. Comput. Phys.
76
,
48
84
(
1988
).
63.
J. W.
Jacobs
and
J. M.
Sheeley
, “
Experimental study of incompressible Richtmyer–Meshkov instability
,”
Phys. Fluids
8
,
405
415
(
1996
).
64.
C.
Matsuoka
, “
Vortex sheet motion in incompressible Richtmyer–Meshkov and Rayleigh–Taylor instabilities with surface tension
,”
Phys. Fluids
21
,
092107
(
2009
).
65.
C.
Matsuoka
, “
Three-dimensional vortex sheet motion with axial symmetry in incompressible Richtmyer–Meshkov and Rayleigh–Taylor instabilities
,”
Phys. Scr.
T155
,
014013
(
2013
).
You do not currently have access to this content.