A detailed study of the flows of ion and neutral argon populations in a helicon plasma was carried out. Understanding the principle ion sinks and sources of neutral fueling is essential to understanding the ability of helicon wave heating to create high density plasmas. This heating mechanism and the neutral fueling required to sustain it and perhaps manipulate the axial density profile in long cylindrical plasmas are an active research topic for advanced plasma wakefield accelerator concepts. Using laser induced fluorescence (LIF) of ion and neutral argon species, an ion flux of up to 2.5×1021 m−2 s−1 was measured leaving the core of a helicon plasma with a peak electron density of 4.0×1018 m−3. Taking the divergence of the axial ion flux profile yields a minimum ionization rate estimate of 2×1021 m−3 s−1, and including the radial divergence increases the estimated ionization rate to approximately 1022 m−3 s−1. Neutral flow velocities measured using LIF reveal a circulatory fueling and loss mechanism with distinct zones where radial or axial sources and sinks dominate.

1.
B.
Buttenschön
,
N.
Fahrenkamp
, and
O.
Grulke
,
Plasma Phys. Controlled Fusion
60
,
075005
(
2018
).
2.
P.
Zhu
and
R. W.
Boswell
,
Phys. Rev. Lett.
63
,
2805
(
1989
).
3.
F. F.
Chen
,
Plasma Sources Sci. Technol.
24
,
014001
(
2015
).
4.
A. W.
Degeling
,
T. E.
Sheridan
, and
R. W.
Boswell
,
Phys. Plasmas
6
,
3664
(
1999
).
5.
R. M.
Magee
,
M. E.
Galante
,
J.
Carr
,
G.
Lusk
,
D. W.
McCarren
, and
E. E.
Scime
,
Phys. Plasmas
20
,
123511
(
2013
).
6.
F. F.
Chen
,
Phys. Plasmas
3
,
1783
(
1996
).
7.
E.
Scime
,
R.
Hardin
,
C.
Biloiu
,
A. M.
Keesee
, and
X.
Sun
,
Phys. Plasmas
14
,
043505
(
2007
).
8.
R. M.
Magee
,
M. E.
Galante
,
N.
Gulbrandsen
,
D. W.
McCarren
, and
E. E.
Scime
,
Phys. Plasmas
19
,
123506
(
2012
).
9.
J.
Green
and
O.
Schmitz
,
Plasma Sources Sci. Technol.
29
(
4
),
034008
(
2020
).
10.
F. F.
Chen
,
Plasma Sources Sci. Technol.
21
,
055013
(
2012
).
11.
G. D.
Severn
,
D. A.
Edrich
, and
R.
McWilliams
,
Rev. Sci. Instrum.
69
,
10
(
1998
).
12.
J.
Green
,
O.
Schmitz
,
G.
Severn
, and
V.
Winters
,
Meas. Sci. Technol.
30
,
055202
(
2019
).
13.
E.
Condon
and
G.
Shortley
,
Atomic Spectra
(
Cambridge University Press
,
New York
,
1959
).
14.
A. M.
Keesee
,
E. E.
Scime
, and
R. F.
Boivin
,
Rev. Sci. Instrum.
75
,
4091
(
2004
).
15.
H.-J.
Woo
,
K.-S.
Chung
,
T.
Lho
, and
R.
Mcwilliams
,
J. Korean Phys. Soc.
48
,
260
(
2006
).
16.
W.
Whaling
,
W.
Anderson
,
M.
Carle
,
J.
Brault
, and
H.
Zarem
,
J. Quant. Spectrosc. Radiat. Transfer
53
(
1
),
1
(
1995
).
17.
A.
Kramida
,
Yu.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database (version 5.7.1), 2019, available online: https://physics.nist.gov/asd, April 29, 2019,
National Institute of Standards and Technology, Gaithersburg, MD
(
2019
).
18.
W.
Whaling
,
W. H. C.
Anderson
, and
M. T.
Carle
,
J. Res. Natl. Inst. Stand. Technol.
107
,
149
(
2002
).
19.
X.
Sun
,
C.
Biloiu
,
R.
Hardin
, and
E. E.
Scime
,
Plasma Sources Sci. Technol.
13
,
359
370
(
2004
).
20.
P.
Stangeby
,
The Plasma Boundary of Magnetic Fusion Devices
(
Institute of Physics Publishing
,
2000
).
21.
J.
Rapp
,
L. W.
Owen
,
J.
Canik
,
J. D.
Lore
,
J. F.
Caneses
,
N.
Kafle
,
H.
Ray
, and
M.
Showers
,
Phys. Plasmas
26
,
042513
(
2019
).
You do not currently have access to this content.