Gyrokinetic simulations are fundamental to understanding and predicting turbulent transport in magnetically confined fusion plasmas. Previous simulations have used model collision operators with approximate field-particle terms of unknown accuracy and/or have neglected collisional finite Larmor radius (FLR) effects. We have implemented the linearized Fokker–Planck collision operator with exact field-particle terms and full FLR effects in a gyrokinetic code (GENE). The new operator, referred to as “exact” in this paper, allows the accuracy of model collision operators to be assessed. The conservative Landau form is implemented because its symmetry underlies the conservation laws and the H-theorem, and enables numerical methods to preserve this conservation, independent of resolution. The implementation utilizes the finite-volume method recently employed to discretize the Sugama collision model in GENE, allowing direct comparison between the two operators. Results show that the Sugama model appears accurate for the growth rates of trapped electron modes (TEMs) driven only by density gradients, but appreciably underestimates the growth rates as the collisionality and electron temperature gradient increase. The TEM turbulent fluxes near the nonlinear threshold using the exact operator are similar to the Sugama model for the ηe=dlnTe/dlnne=0 case, but substantially larger than the Sugama model for the ηe=1 case. The FLR effects reduce the growth rates increasingly with wavenumber, deepening a “valley” at the intermediate binormal wavenumber as the unstable mode extends from the TEM regime to the electron temperature gradient instability regime. Application to the Hinton–Rosenbluth problem shows that zonal flows decay faster as the radial wavenumber increases and the exact operator yields weaker decay rates.

1.
H.
Sugama
,
T.-H.
Watanabe
, and
M.
Nunami
,
Phys. Plasmas
16
,
112503
(
2009
).
2.
F. L.
Hinton
and
M. N.
Rosenbluth
,
Plasma Phys. Controlled Fusion
41
,
A653
(
1999
).
3.
E. A.
Frieman
and
L.
Chen
,
Phys. Fluids
25
,
502
(
1982
).
4.
P. J.
Catto
and
K. T.
Tsang
,
Phys. Fluids
20
,
396
(
1977
).
5.
L. D.
Landau
,
Phys. Z. Sowjetunion (USSR)
10
,
154
(
1936
).
6.
M. N.
Rosenbluth
,
W. M.
MacDonald
, and
D. L.
Judd
,
Phys. Rev.
107
(
1
),
1
(
1957
).
7.
S. P.
Hirshman
and
D. J.
Sigmar
,
Phys. Fluids
19
,
1532
(
1976
).
8.
B.
Li
and
D. R.
Ernst
,
Phys. Rev. Lett.
106
,
195002
(
2011
).
9.
G.
Rewoldt
,
W. M.
Tang
, and
R. J.
Hastie
,
Phys. Fluids
30
,
807
(
1987
).
10.
X. Q.
Xu
and
M. N.
Rosenbluth
,
Phys. Fluids B
3
,
627
(
1991
).
11.
A. M.
Dimits
and
B. I.
Cohen
,
Phys. Rev. E
49
,
709
(
1994
).
12.
M.
Kotschenreuther
,
G.
Rewoldt
, and
W. M.
Tang
,
Comput. Phys. Commun.
88
,
128
(
1995
).
13.
Z.
Lin
,
W. M.
Tang
, and
W. W.
Lee
,
Phys. Plasmas
2
,
2975
(
1995
).
14.
R. A.
Kolesnikov
,
W. X.
Wang
,
F. L.
Hinton
,
G.
Rewoldt
, and
W. M.
Tang
,
Phys. Plasmas
17
,
022506
(
2010
).
15.
E. S.
Yoon
and
C. S.
Chang
,
Phys. Plasmas
21
,
032503
(
2014
).
16.
R.
Hager
,
E. S.
Yoon
,
S.
Ku
,
E. F.
D'Azevedo
,
P. H.
Worley
, and
C. S.
Chang
,
J. Comput. Phys.
315
,
644
(
2016
).
17.
R.
Jorge
,
B. J.
Frei
, and
P.
Ricci
,
J. Plasma Phys.
85
,
905850604
(
2019
).
18.
J. W.
Burby
,
A. J.
Brizard
, and
H.
Qin
,
Phys. Plasmas
22
,
100707
(
2015
).
19.
D. R.
Ernst
,
N.
Basse
,
W.
Dorland
,
C. L.
Fiore
,
L.
Lin
,
A.
Long
,
M.
Porkolab
,
K.
Zeller
, and
K.
Zhurovich
, in
Proceedings of the 21st International Atomic Energy Agency Fusion Energy Conference
, Chengdu, China (
2006
).
20.
I. G.
Abel
,
M.
Barnes
,
S. C.
Cowley
,
W.
Dorland
, and
A. A.
Schekochihin
,
Phys. Plasmas
15
,
122509
(
2008
).
21.
P. J.
Catto
and
D. R.
Ernst
,
Plasma Phys. Controlled Fusion
51
,
062001
(
2009
).
22.
M.
Barnes
,
I. G.
Abel
,
W.
Dorland
,
D. R.
Ernst
,
G. W.
Hammett
,
P.
Ricci
,
B. N.
Rogers
,
A. A.
Schekochihin
, and
T.
Tatsuno
,
Phys. Plasmas
16
,
072107
(
2009
).
23.
M.
Nakata
,
M.
Nunami
,
T.-H.
Watanabe
, and
H.
Sugama
,
Comput. Phys. Commun.
197
,
61
(
2015
).
24.
E. A.
Belli
and
J.
Candy
,
Plasma Phys. Controlled Fusion
59
,
045005
(
2017
).
25.
P.
Crandall
,
D.
Jarema
,
H.
Doerk
,
Q.
Pan
,
G.
Merlo
,
T.
Görler
,
A.
Bañón-Navarro
,
D.
Told
,
M.
Maurer
, and
F.
Jenko
, “
Multi-species collisions for delta-f gyrokinetic simulations: Implementation and validation with GENE
,” Comput. Phys. Commun. (submitted).
26.
P.
Crandall
, “
Collisional and electromagnetic physics in gyrokinetic models
,” Ph.D. thesis (
University of California
, Los Angeles
2019
).
27.
Q.
Pan
and
D. R.
Ernst
,
Phys. Rev. E
99
,
023201
(
2019
).
28.
F.
Jenko
,
W.
Dorland
,
M.
Kotschenreuther
, and
B. N.
Rogers
,
Phys. Plasmas
7
,
1904
(
2000
).
29.
A. J.
Brizard
and
T. S.
Hahm
,
Rev. Mod. Phys.
79
,
421
(
2007
).
30.
A. J.
Brizard
,
Phys. Plasmas
11
,
4429
(
2004
).
31.
32.
D.
Told
, “
Gyrokinetic microturbulence in transport barriers
,” Ph.D. thesis (
Universität Ulm
,
2012
).
33.
D. H. E.
Dubin
,
J. A.
Krommes
,
C.
Oberman
, and
W. W.
Lee
,
Phys. Fluids
26
,
3524
(
1983
).
34.
A.
Brizard
,
Phys. Fluids B
1
,
1381
(
1989
).
35.
Y.
Idomura
,
M.
Ida
,
S.
Tokuda
, and
L.
Villard
,
J. Comput. Phys.
226
,
244
(
2007
).
36.
L. N.
Trefethen
and
J. A. C.
Weideman
,
SIAM Rev.
56
,
385
(
2014
).
37.
H.
Doerk
and
F.
Jenko
,
Comput. Phys. Commun.
185
,
1938
(
2014
).
38.
A. C.
Genz
and
A. A.
Malik
,
J. Comput. Appl. Math.
6
,
295
(
1980
).
39.
E. A.
Belli
and
J.
Candy
,
Plasma Phys. Controlled Fusion
54
,
015015
(
2012
).
40.
M.
Oberparleiter
,
H.
Nordman
,
G.
Verdoolaege
, and
F.
Jenko
,
J. Phys.: Conf. Ser.
775
,
012009
(
2016
).
41.
D. R.
Ernst
,
P. T.
Bonoli
,
P. J.
Catto
,
W.
Dorland
,
C. L.
Fiore
,
R. S.
Granetz
,
M.
Greenwald
,
A. E.
Hubbard
,
M.
Porkolab
,
M. H.
Redi
,
J. E.
Rice
,
K.
Zhurovich
, and
Alcator C-Mod Group,
Phys. Plasmas
11
,
2637
(
2004
).
42.
D. R.
Ernst
,
K. H.
Burrell
,
W.
Guttenfelder
,
T. L.
Rhodes
,
A. M.
Dimits
,
R.
Bravenec
,
B. A.
Grierson
,
C.
Holland
,
J.
Lohr
,
A.
Marinoni
,
G. R.
McKee
,
C. C.
Petty
,
J. C.
Rost
,
L.
Schmitz
,
G.
Wang
,
S.
Zemedkun
,
L.
Zeng
, and
DIII-D Team,
Phys. Plasmas
23
,
056112
(
2016
).
43.
M.
Landreman
and
D. R.
Ernst
,
J. Comput. Phys.
243
,
130
(
2013
).
44.
J. D.
Huba
,
NRL Plasma Formulary
(
Naval Research Laboratory
,
Washington, DC
,
2016
).
45.
T.
Dannert
and
F.
Jenko
,
Phys. Plasmas
12
,
072309
(
2005
).
46.
D. R.
Ernst
,
J.
Lang
,
W. M.
Nevins
,
M.
Hoffman
,
Y.
Chen
,
W.
Dorland
, and
S.
Parker
,
Phys. Plasmas
16
,
055906
(
2009
).
47.
Q.
Pan
,
D. R.
Ernst
, and
P.
Crandall
, “
Importance of gyrokinetic exact Fokker–Planck collisions in fusion plasma turbulence
,” Phys. Rev. Lett. (submitted).
48.
P. H.
Diamond
,
S. I.
Itoh
,
K.
Itoh
, and
T. S.
Hahm
,
Plasma Phys. Controlled Fusion
47
,
R35
(
2005
).
You do not currently have access to this content.