A molecular dynamics simulation of ion flow past dust grains is used to investigate the interaction between a pair of charged dust particles and streaming ions. The charging and dynamics of the grains are coupled and derived from the ion–dust interactions, allowing for detailed analysis of the ion wakefield structure and wakefield-mediated interaction as the dust particles change position. When a downstream grain oscillates vertically within the wake, it decharges by up to 30% as it approaches the upstream grain and then recharges as it recedes. There is an apparent hysteresis in charging depending on whether the grain is approaching or receding from a region of higher ion density. Maps of the ion-mediated dust–dust interaction force show that the radial extent of the wake region, which provides an attractive restoring force on the downstream particle, increases as the ion flow velocity decreases, though the restoring effect becomes weaker. As also shown in recent numerical results, there is no net attractive vertical force between the two grains. Instead, the reduced ion drag on the downstream particle allows it to “draft” in the wakefield of the upstream particle.

1.
P.
Hartmann
,
A.
Douglass
,
J.
Carmona-Reyes
,
L.
Matthews
,
T.
Hyde
,
A.
Kovacs
, and
Z.
Donko
,
Phys. Rev. Lett.
105
,
115004
(
2010
).
2.
J. H.
Chu
and
I.
Lin
,
Phys. Rev. Lett.
72
,
4009
(
1994
).
3.
A. P.
Nefedov
,
O. F.
Petrov
,
V. I.
Molotkov
, and
V. E.
Fortov
,
J. Exp. Theor. Phys. Lett.
72
,
218
(
2000
).
4.
J.
Kong
,
T. W.
Hyde
,
L.
Matthews
,
K.
Qiao
,
Z.
Zhang
, and
A.
Douglass
,
Phys. Rev. E
84
,
016411
(
2011
).
5.
H.
Thomas
,
G. E.
Morfill
,
V.
Demmel
,
J.
Goree
,
B.
Feuerbacher
, and
D.
Möhlmann
,
Phys. Rev. Lett.
73
,
652
(
1994
).
6.
G. A.
Hebner
and
M. E.
Riley
,
Phys. Rev. E
68
,
046401
(
2003
).
7.
A.
Melzer
,
V. A.
Schweigert
, and
A.
Piel
,
Phys. Scr.
61
,
494
(
2000
).
8.
M.
Kroll
,
J.
Schablinski
,
D.
Block
, and
A.
Piel
,
Phys. Plasmas
17
,
013702
(
2010
).
9.
P.
Ludwig
,
W. J.
Miloch
,
H.
Kählert
, and
M.
Bonitz
,
New J. Phys.
14
,
053016
(
2012
).
10.
M.
Lampe
,
G.
Joyce
, and
G.
Ganguli
,
IEEE Trans. Plasma Sci.
33
,
57
(
2005
).
11.
M.
Lampe
,
G.
Joyce
,
G.
Ganguli
, and
V.
Gavrishchaka
,
Phys. Plasmas
7
,
3851
(
2000
).
12.
I. H.
Hutchinson
,
Phys. Rev. E
85
,
066409
(
2012
).
13.
V. R.
Ikkurthi
,
K.
Matyash
,
A.
Melzer
, and
R.
Schneider
,
Phys. Plasmas
17
,
103712
(
2010
).
14.
W. J.
Miloch
,
M.
Kroll
, and
D.
Block
,
Phys. Plasmas
17
,
103703
(
2010
).
15.
W. J.
Miloch
and
D.
Block
,
Phys. Plasmas
19
,
123703
(
2012
).
16.
A.
Melzer
,
A.
Schella
, and
M.
Mulsow
,
Phys. Rev. E
89
,
013109
(
2014
).
17.
K.
Qiao
,
J.
Kong
,
E. V.
Oeveren
,
L. S.
Matthews
, and
T. W.
Hyde
,
Phys. Rev. E
88
,
043103
(
2013
).
18.
K.
Qiao
,
J.
Kong
,
Z.
Zhang
,
L. S.
Matthews
, and
T. W.
Hyde
,
IEEE Trans. Plasma Sci.
41
,
745
(
2013
).
19.
A.
Piel
,
Phys. Plasmas
24
,
033712
(
2017
).
20.
A.
Piel
,
F.
Greiner
,
H.
Jung
, and
W. J.
Miloch
,
Phys. Plasmas
25
,
083702
(
2018
).
21.
A.
Piel
,
H.
Jung
, and
F.
Greiner
,
Phys. Plasmas
25
,
083703
(
2018
).
22.
J.
Schleede
,
L.
Lewerentz
,
F. X.
Bronold
,
R.
Schneider
, and
H.
Fehske
,
Phys. Plasmas
25
,
043702
(
2018
).
23.
I. H.
Hutchinson
,
Plasma Phys. Controlled Fusion
44
,
1953
(
2002
).
24.
A.
Piel
and
J. A.
Goree
,
Phys. Rev. E
88
,
063103
(
2013
).
25.
S.
Ratynskaia
,
S.
Khrapak
,
A.
Zobnin
,
M. H.
Thoma
,
M.
Kretschmer
,
A.
Usachev
,
V.
Yaroshenko
,
R. A.
Quinn
,
G. E.
Morfill
,
O.
Petrov
, and
V.
Fortov
,
Phys. Rev. Lett.
93
,
085001
(
2004
).
26.
S. A.
Khrapak
,
S. V.
Ratynskaia
,
A. V.
Zobnin
,
A. D.
Usachev
,
V. V.
Yaroshenko
,
M. H.
Thoma
,
M.
Kretschmer
,
H.
Höfner
,
G. E.
Morfill
,
O. F.
Petrov
, and
V. E.
Fortov
,
Phys. Rev. E
72
,
016406
(
2005
).
27.
M.
Gatti
and
U.
Kortshagen
,
Phys. Rev. E
78
,
046402
(
2008
).
28.
Z.
Donkó
,
Plasma Sources Sci. Technol.
20
,
024001
(
2011
).
29.
A. V.
Phelps
,
J. Appl. Phys.
76
,
747
(
1994
).
30.
A.
Douglass
,
V.
Land
,
K.
Qiao
,
L.
Matthews
, and
T.
Hyde
,
Phys. Plasmas
19
,
013707
(
2012
).
31.
P.
Hartmann
,
A. Z.
Kovács
,
J. C.
Reyes
,
L. S.
Matthews
, and
T. W.
Hyde
,
Plasma Sources Sci. Technol.
23
,
045008
(
2014
).
33.
E. C.
Whipple
,
Rep. Prog. Phys.
44
,
1197
(
1981
).
34.
J.-P.
Lafon
,
P. L.
Lamy
, and
J.
Millet
,
Astron. Astrophys.
95
,
295
(
1981
), http://adsabs.harvard.edu/full/1981A%26A....95..295L
35.
M.
Lampe
,
R.
Goswami
,
Z.
Sternovsky
,
S.
Robertson
,
V.
Gavrishchaka
,
G.
Ganguli
, and
G.
Joyce
,
Phys. Plasmas
10
,
1500
(
2003
).
36.
I. H.
Hutchinson
and
L.
Patacchini
,
Phys. Plasmas
14
,
013505
(
2007
).
37.
A. V.
Zobnin
,
A. P.
Nefedov
,
V. A.
Sinel'shchikov
, and
V. E.
Fortov
,
J. Exp. Theor. Phys.
91
,
483
(
2000
).
38.
T.
Matsoukas
and
M.
Russell
,
Phys. Rev. E
55
,
991
(
1997
).
39.
L. S.
Matthews
,
B.
Shotorban
, and
T. W.
Hyde
,
Phys. Rev. E
97
,
053207
(
2018
).
40.
C.
Cui
and
J.
Goree
,
IEEE Trans. Plasma Sci.
22
,
151
(
1994
).
41.
A. A.
Samarian
and
S. V.
Vladimirov
,
Contrib. Plasma Phys.
49
,
260
(
2009
).
42.
J.
Carstensen
,
F.
Greiner
,
D.
Block
,
J.
Schablinski
,
W. J.
Miloch
, and
A.
Piel
,
Phys. Plasmas
19
,
033702
(
2012
).
43.
V.
Steinberg
,
R.
Sütterlin
,
A. V.
Ivlev
, and
G.
Morfill
,
Phys. Rev. Lett.
86
,
4540
(
2001
).
44.
A.
Melzer
,
V. A.
Schweigert
, and
A.
Piel
,
Phys. Rev. Lett.
83
,
3194
(
1999
).
45.
K.
Takahashi
,
T.
Oishi
,
K.
Shimomai
,
Y.
Hayashi
, and
S.
Nishino
,
Phys. Rev. E
58
,
7805
(
1998
).
46.
M.
Chen
,
M.
Dropmann
,
B.
Zhang
,
L. S.
Matthews
, and
T. W.
Hyde
,
Phys. Rev. E
94
,
033201
(
2016
).
47.
J. R.
Creel
, “
Characteristic measurements within a GEC Rf reference cell
,” Ph.D. thesis,
Baylor University
,
2010
.
48.
V.
Schweigert
,
I.
Schweigert
,
A.
Melzer
,
A.
Homann
, and
A.
Piel
,
Phys. Rev. E
54
,
4155
(
1996
).
49.
A. V.
Ivlev
and
G.
Morfill
,
Phys. Rev. E
63
,
016409
(
2000
).
50.
K.
Qiao
,
J.
Kong
,
J.
Carmona-Reyes
,
L. S.
Matthews
, and
T. W.
Hyde
,
Phys. Rev. E
90
,
033109
(
2014
).
51.
W.
Cai
, “
Potential field of a uniformly charged ellipsoid
,” http://micro.stanford.edu/~caiwei/me340a/A_Ellipsoid_Potential.pdf.
52.
K.
Qiao
,
J.
Kong
,
L. S.
Matthews
, and
T. W.
Hyde
,
Phys. Rev. E
91
,
053101
(
2015
).
53.
H.
Jung
,
F.
Greiner
,
O. H.
Asnaz
,
J.
Carstensen
, and
A.
Piel
,
Phys. Plasmas
22
,
053702
(
2015
).
54.
S.
Nunomura
,
T.
Misawa
,
N.
Ohno
, and
S.
Takamura
,
Phys. Rev. Lett.
83
,
1970
(
1999
).
55.
T. W.
Hyde
,
J.
Kong
, and
L. S.
Matthews
,
Phys. Rev. E
87
,
053106
(
2013
).
56.
M. Y.
Pustylnik
,
M. A.
Fink
,
V.
Nosenko
,
T.
Antonova
,
T.
Hagl
,
H. M.
Thomas
,
A. V.
Zobnin
,
A. M.
Lipaev
,
A. D.
Usachev
,
V. I.
Molotkov
,
O. F.
Petrov
,
V. E.
Fortov
,
C.
Rau
,
C.
Deysenroth
,
S.
Albrecht
,
M.
Kretschmer
,
M. H.
Thoma
,
G. E.
Morfill
,
R.
Seurig
,
A.
Stettner
,
V. A.
Alyamovskaya
,
A.
Orr
,
E.
Kufner
,
E. G.
Lavrenko
,
G. I.
Padalka
,
E. O.
Serova
,
A. M.
Samokutyayev
, and
S.
Christoforetti
,
Rev. Sci. Instrum.
87
,
093505
(
2016
).
You do not currently have access to this content.