A non-perturbative analysis for the study non-axisymmetric (3D) effects on the linear ion-temperature-gradient driven mode is introduced. Perturbations and equilibria are considered to be global on the flux surface, yet radially local. The analysis is valid for systems arbitrarily far from axisymmetry. It is found that finite Larmor radius effects can suppress the global (on the surface) instability, in analogy with the local analysis but shift its poloidal location from the position of the greatest local instability. Fourier spectra of the instability whose width grow for increasingly non-axisymmetric systems are predicted. Results are in qualitative agreement with numerical global (on the surface) gyrokinetic simulations.

1.
L. I.
Rudakov
and
R. Z.
Sagdeev
,
Dokl. Akad. Nauk CCCP
138
,
581
(
1961
).
2.
B.
Coppi
,
M. N.
Rosenbluth
, and
R. Z.
Sagdeev
,
Phys. Fluids
10
,
582
(
1967
).
3.
P.
Xanthopoulos
,
G. G.
Plunk
,
A.
Zocco
, and
P.
Helander
,
Phys. Rev. X
6
,
021033
(
2016
).
4.
F.
Romanelli
and
F.
Zonca
,
Phys. Fluids B
5
,
4081
(
1993
).
5.
J. B.
Taylor
,
H. R.
Wilson
, and
J. W.
Connor
,
Plasma Phys. Controlled Fusion
38
,
243
(
1996
).
6.
D.
Dickinson
,
C. M.
Roach
,
J. M.
Skipp
, and
H. R.
Wilson
,
Phys. Plasmas
21
,
010702
(
2014
).
7.
P. A.
Abdoul
,
D.
Dickinson
,
C. M.
Roach
, and
H. R.
Wilson
,
Plasma Phys. Controlled Fusion
57
,
065004
(
2015
).
8.
A.
Zocco
,
G. G.
Plunk
,
P.
Xanthopoulos
, and
P.
Helander
,
Phys. Plasmas
23
,
082516
(
2016
).
9.
C.
Kittel
,
Introduction to Solid State Physics
, 4th ed. (
John Wiley and Sons
,
2005
), Chap. 1.
10.
G. G.
Plunk
,
P.
Helander
,
P.
Xanthopoulos
, and
J. W.
Connor
,
Phys. Plasmas
21
,
032112
(
2014
).
11.
F.
Romanelli
,
Phys. Fluids B
1
,
1018
(
1989
).
12.
R. L.
Dewar
and
A. H.
Glasser
,
Phys. Fluids
26
,
3038
(
1983
).
13.
W. A.
Cooper
,
D. B.
Singleton
, and
R. L.
Dewar
,
Phys. Plasmas
3
,
275
(
1996
).
14.
M.
Nunami
,
T.-H.
Watanabe
, and
H.
Sugama
,
Plasma Fusion Res.
5
,
016
(
2010
).
15.
F.
Jenko
,
W.
Dorland
,
M.
Kotschenreuther
, and
B. N.
Rogers
,
Phys. Plasmas
7
,
1904
(
2000
).
16.
P.
Xanthopoulos
,
H. E.
Mynick
,
P.
Helander
,
Y.
Turkin
,
G. G.
Plunk
,
F.
Jenko
,
T.
Görler
,
D.
Told
,
T.
Bird
, and
J. H. E.
Proll
,
Phys. Rev. Lett.
113
,
155001
(
2014
).
17.
N. W.
McLachlan
,
Theory and Application of Mathieu Functions
(
Oxford University Press
,
1947
).
18.
Formally, this is true for mρ*2(τLT/LB)1/4.
You do not currently have access to this content.