We present an ultrafast neural network model, QLKNN, which predicts core tokamak transport heat and particle fluxes. QLKNN is a surrogate model based on a database of 3 × 108 flux calculations of the quasilinear gyrokinetic transport model, QuaLiKiz. The database covers a wide range of realistic tokamak core parameters. Physical features such as the existence of a critical gradient for the onset of turbulent transport were integrated into the neural network training methodology. We have coupled QLKNN to the tokamak modeling framework JINTRAC and rapid control-oriented tokamak transport solver RAPTOR. The coupled frameworks are demonstrated and validated through application to three JET shots covering a representative spread of H-mode operating space, predicting the turbulent transport of energy and particles in the plasma core. JINTRAC–QLKNN and RAPTOR–QLKNN are able to accurately reproduce JINTRAC–QuaLiKiz Ti,e and ne profiles, but 3–5 orders of magnitude faster. Simulations which take hours are reduced down to only a few tens of seconds. The discrepancy in the final source-driven predicted profiles between QLKNN and QuaLiKiz is on the order of 1%–15%. Also the dynamic behavior was well captured by QLKNN, with differences of only 4%–10% compared to JINTRAC–QuaLiKiz observed at mid-radius, for a study of density buildup following the L–H transition. Deployment of neural network surrogate models in multi-physics integrated tokamak modeling is a promising route toward enabling accurate and fast tokamak scenario optimization, uncertainty quantification, and control applications.

1.
F. M.
Poli
,
Phys. Plasmas
25
,
055602
(
2018
).
2.
E. J.
Doyle
,
W. A.
Houlberg
,
Y.
Kamada
,
V.
Mukhovatov
,
T. H.
Osborne
,
A.
Polevoi
,
G.
Bateman
,
J. W.
Connor
,
J. G.
Cordey
,
T.
Fujita
,
X.
Garbet
,
T. S.
Hahm
,
L. D.
Horton
,
A. E.
Hubbard
,
F.
Imbeaux
,
F.
Jenko
,
J. E.
Kinsey
,
Y.
Kishimoto
,
J.
Li
,
T. C.
Luce
,
Y.
Martin
,
M.
Ossipenko
,
V.
Parail
,
A.
Peeters
,
T. L.
Rhodes
,
J. E.
Rice
,
C. M.
Roach
,
V.
Rozhansky
,
F.
Ryter
,
G.
Saibene
,
R.
Sartori
,
A. C. C.
Sips
,
J. A.
Snipes
,
M.
Sugihara
,
E. J.
Synakowski
,
H.
Takenaga
,
T.
Takizuka
,
K.
Thomsen
,
M. R.
Wade
,
H. R.
Wilson
,
ITPA Transport Physics Topical Group, ITPA Confinement Database and Modelling Topical Group, and ITPA Pedestal and Edge Topical Group,
Nucl. Fusion
47
,
S18
(
2007
).
3.
W.
Horton
,
B.
Hu
,
J. Q.
Dong
, and
P.
Zhu
,
New J. Phys.
5
,
14
(
2003
).
4.
J.
Citrin
,
C.
Bourdelle
,
F. J.
Casson
,
C.
Angioni
,
N.
Bonanomi
,
Y.
Camenen
,
X.
Garbet
,
L.
Garzotti
,
T.
Görler
,
O.
Gürcan
,
F.
Koechl
,
F.
Imbeaux
,
O.
Linder
,
K.
van de Plassche
,
P.
Strand
, and
G.
Szepesi
,
Plasma Phys. Controlled Fusion
59
,
124005
(
2017
).
5.
C.
Bourdelle
,
J.
Citrin
,
B.
Baiocchi
,
A.
Casati
,
P.
Cottier
,
X.
Garbet
,
F.
Imbeaux
, and
JET Contributors
,
Plasma Phys. Controlled Fusion
58
,
014036
(
2016
).
6.
See http://qualikiz.com for “
QuaLiKiz Homepage
,”
2019
.
7.
G. M.
Staebler
,
J. E.
Kinsey
, and
R. E.
Waltz
,
Phys. Plasmas
14
,
055909
(
2007
).
8.
A.
Casati
,
C.
Bourdelle
,
X.
Garbet
,
F.
Imbeaux
,
J.
Candy
,
F.
Clairet
,
G.
Dif-Pradalier
,
G.
Falchetto
,
T.
Gerbaud
,
V.
Grandgirard
,
Ö. D.
Gürcan
,
P.
Hennequin
,
J.
Kinsey
,
M.
Ottaviani
,
R.
Sabot
,
Y.
Sarazin
,
L.
Vermare
, and
R. E.
Waltz
,
Nucl. Fusion
49
,
085012
(
2009
).
9.
J.
Citrin
,
C.
Bourdelle
,
P.
Cottier
,
D. F.
Escande
,
Ö. D.
Gürcan
,
D. R.
Hatch
,
G. M. D.
Hogeweij
,
F.
Jenko
, and
M. J.
Pueschel
,
Phys. Plasmas
19
,
062305
(
2012
).
10.
P.
Cottier
,
C.
Bourdelle
,
Y.
Camenen
,
Ö. D.
Gürcan
,
F. J.
Casson
,
X.
Garbet
,
P.
Hennequin
, and
T.
Tala
,
Plasma Phys. Controlled Fusion
56
,
015011
(
2014
).
11.
G.
Cenacchi
and
A.
Taroni
,
Report No. JET-IR eNEA-RT-TIB–88-5 84
(
1988
).
12.
M.
Romanelli
,
G.
Corrigan
,
V.
Parail
,
S.
Wiesen
,
R.
Ambrosino
,
P.
da Silva
,
A.
Belo
,
L.
Garzotti
,
D.
Harting
,
F.
Köchl
,
T.
Koskela
,
A.
Lauro-Taroni
,
C.
Marchett
,
A.
Mattei
,
E.
Militello-asp
,
M. F. F.
Nave
,
S.
Pamela
,
A.
Salmi
,
P.
Strand
, and
G.
Szepesi
,
Plasma Fusion Res.
9
,
3403023
(
2014
).
13.
A.
Ho
,
J.
Citrin
,
F.
Auriemma
,
C.
Bourdelle
,
F. J.
Casson
,
H.-T.
Kim
,
P.
Manas
,
G.
Szepesi
, and
H.
Weisen
,
Nucl. Fusion
59
,
056007
(
2019
).
14.
S.
Breton
,
F. J.
Casson
,
C.
Bourdelle
,
J.
Citrin
,
Y.
Baranov
,
Y.
Camenen
,
C.
Challis
,
G.
Corrigan
,
J.
Garcia
,
L.
Garzotti
,
S.
Henderson
,
F.
Koechl
,
E.
Militello-Asp
,
M.
O'Mullane
,
T.
Pütterich
,
M.
Sertoli
, and
M.
Valisa
,
Nucl. Fusion
58
,
096003
(
2018
).
15.
F. J.
Casson
,
H.
Patten
,
C.
Bourdelle
,
S.
Breton
,
J.
Citrin
,
F.
Köchl
,
C.
Angioni
,
Y.
Baranov
,
R.
Bilato
,
E. A.
Belli
,
C. D.
Challis
,
G.
Corrigan
,
A.
Czarnecka
,
O.
Ficker
,
L.
Garzotti
,
M.
Goniche
,
J. P.
Graves
,
T.
Johnson
,
K.
Kirov
,
P. J.
Knight
,
E. A.
Lerche
,
M. J.
Mantsinen
,
J.
Mlynář
,
M.
Sertoli
,
M.
Valisa
, and
JET Contributors
, in
IAEA Book of Abstracts
(
2018
).
16.
O.
Linder
,
J.
Citrin
,
G. M. D.
Hogeweij
,
C.
Angioni
,
C.
Bourdelle
,
F. J.
Casson
,
E.
Fable
,
A.
Ho
,
F.
Koechl
, and
M.
Sertoli
,
Nucl. Fusion
59
,
016003
(
2019
).
17.
O.
Meneghini
,
S. P.
Smith
,
P. B.
Snyder
,
G. M.
Staebler
,
J.
Candy
,
E.
Belli
,
L.
Lao
,
M.
Kostuk
,
T.
Luce
,
T.
Luda
,
J. M.
Park
, and
F.
Poli
,
Nucl. Fusion
57
,
086034
(
2017
).
18.
R. J.
Goldston
,
D. C.
McCune
,
H. H.
Towner
,
S. L.
Davis
,
R. J.
Hawryluk
, and
G. L.
Schmidt
,
J. Comput. Phys.
43
,
61
(
1981
).
19.
A.
Pankin
,
D.
McCune
,
R.
Andre
,
G.
Bateman
, and
A.
Kritz
,
Comput. Phys. Commun.
159
,
157
(
2004
).
20.
M. D.
Boyer
,
S.
Kaye
, and
K.
Erickson
,
Nucl. Fusion
59
,
056008
(
2019
).
21.
J.
Citrin
,
S.
Breton
,
F.
Felici
,
F.
Imbeaux
,
T.
Aniel
,
J. F.
Artaud
,
B.
Baiocchi
,
C.
Bourdelle
,
Y.
Camenen
, and
J.
Garcia
,
Nucl. Fusion
55
,
092001
(
2015
).
22.
F.
Felici
,
J.
Citrin
,
A. A.
Teplukhina
,
J.
Redondo
,
C.
Bourdelle
,
F.
Imbeaux
, and
O.
Sauter
,
Nucl. Fusion
58
,
096006
(
2018
).
23.
J.
Citrin
,
H.
Arnichand
,
J.
Bernardo
,
C.
Bourdelle
,
X.
Garbet
,
F.
Jenko
,
S.
Hacquin
,
M. J.
Pueschel
, and
R.
Sabot
,
Plasma Phys. Controlled Fusion
59
,
064010
(
2017
).
24.
K. L.
van de Plassche
and
J.
Citrin
(
2019
). “
QLKNN10D training set
,”
Zenodo
, Dataset, https://doi.org/10.5281/zenodo.3497066.
25.
F.
Jenko
,
Comput. Phys. Commun.
125
,
196
(
2000
).
26.
V. I.
Dagnelie
, “
Dynamics of linear ITG modes with flow shear in ballooning space
,” Master's thesis (
Utrecht University
,
2017
).
27.
V. I.
Dagnelie
,
J.
Citrin
,
F.
Jenko
,
M. J.
Pueschel
,
T.
Görler
,
D.
Told
, and
H.
Doerk
,
Phys. Plasmas
26
,
012502
(
2019
).
28.
M.
Marin
,
J.
Citrin
,
C.
Bourdelle
,
Y.
Camenen
,
F. J.
Casson
,
A.
Ho
,
F.
Koechl
,
M.
Maslov
, and
JET Contributors
, “First-principles-based multiple-isotope particle transport modelling at JET,”
Nucl. Fusion
(to be published).
29.
B.
Baiocchi
,
C.
Bourdelle
,
C.
Angioni
,
F.
Imbeaux
,
A.
Loarte
, and
M.
Maslov
,
Nucl. Fusion
55
,
123001
(
2015
).
30.
D.
Schaefer
, “
Hybrid neural networks in nuclear fusion transport modelling
,” Master's thesis (
Faculty of Physics
, LMU,
2019
).
31.
S.
Haykin
,
Neural Networks: A Comprehensive Foundation
, 2nd ed. (
Prentice Hall PTR
,
Upper Saddle River, NJ, USA
,
1998
).
32.
G.
Cybenko
, “
Mathematics of control
,”
Signals Syst.
2
,
303
(
1989
).
33.
M.
Nielsen
,
Neural Networks and Deep Learning
(
Determination Press
,
2015
).
34.
L.
Bottou
,
F. E.
Curtis
, and
J.
Nocedal
, e-print arXiv:1606.04838 (
2016
).
35.
D.
Masters
and
C.
Luschi
, e-print arXiv:1804.07612 (
2018
).
36.
Dask Development Team
, see https://dask.org for “Dask: Library for Dynamic Task Scheduling.”
37.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, see https://www.tensorflow.org for “
TensorFlow: Large-scale machine learning on heterogeneous systems
.”
38.
S.
van der Walt
,
S. C.
Colbert
, and
G.
Varoquaux
,
Comput. Sci. Eng.
13
,
22
(
2011
).
39.
See http://gitlab.com/qualikiz-group/QLKNN-fortran for “
QLKNN-Fortran Repository
,”
2019
.
40.
See https://github.com/spotify/luigi for “
Luigi Repository
,”
2019
.
41.
D. P.
Kingma
and
J.
Ba
, e-print CoRR abs/1412.6980 (
2014
).
42.
See http://gitlab.com/qualikiz-group/QLKNN-hyper for “
QLKNN JSON networks repository
,”
2019
.
43.
K. L.
van de Plassche
,
J.
Citrin
,
C.
Bourdelle
,
Y.
Camenen
,
F. J.
Casson
,
V. I.
Dagnelie
,
F.
Felici
,
A.
Ho
, and
S.
Van Mulders
, “Fast modeling of turbulent transport in fusion plasmas using neural networks,”
Zenodo
(
2019
).
You do not currently have access to this content.