It is shown that the difference between the Planck distribution and the spectral energy distribution of the equilibrium radiation in a homogeneous and isotropic material medium is completely determined by the transverse dielectric permittivity of the material medium. In contrast with the well known approach for the generalized spectral energy distribution of the equilibrium radiation in a plasma medium based on accounting only the frequency dependence of the dielectric permittivity, the crucial role of both the frequency and the spatial dispersions of the transverse dielectric permittivity is demonstrated. On this basis, the high-frequency and the low-frequency asymptotical properties of the spectral energy distribution in an ideal gaseous plasma are considered. The obtained results for the equilibrium spectral distribution are principally different from the corresponding asymptotic of the Planck distribution, possessing a long tail at the high frequency and a logarithmical increase at the low frequency.

2.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics: Part 1
(
Pergamon Press
,
Oxford
,
1980
).
3.
A. I.
Volokitin
and
B. N. J.
Persson
,
Phys. Usp.
50
,
879
(
2007
).
4.
E. A.
Vinogradov
and
I. A.
Dorofeyev
,
Phys. Usp.
52
,
425
(
2009
).
5.
H.
Reinholz
and
G.
Roepke
,
Phys. Rev. E
85
,
036401
(
2012
).
6.
Y. V.
Arkhipov
,
A. B.
Ashikbayeva
,
A.
Askaruly
,
A. E.
Davletov
, and
I. M.
Tkachenko
,
Phys. Rev. E
90
,
053102
(
2014
).
7.
H.
Reinholz
,
G.
Roepke
,
S.
Rosmej
, and
R.
Redmer
,
Phys. Rev. E
91
,
043105
(
2015
).
8.
M.
Veysman
,
G.
Roepke
,
M.
Winkel
, and
H.
Reinholz
,
Phys. Rev. E
94
,
013203
(
2016
).
10.
V. B.
Bobrov
,
Teor. Mat. Fiz.
88
,
773
(
1991
).
11.
M.
Opher
and
R.
Opher
,
Phys. Rev. Lett.
79
,
2628
(
1997
).
12.
13.
R.
Schlickeiser
and
P. H.
Yoon
,
Phys. Plasmas
19
,
022105
(
2012
).
14.
L. D.
Landau
and
E. M.
Lifshitz
,
Electrodynamics of Continuous Media
(
Pergamon Press
,
New York
,
1975
).
15.
V. M.
Agranovich
and
V. L.
Ginzburg
,
Crystal Optics with Spatial Dispersion, and Excitons
(
Springer-Verlag
,
Berlin
,
1984
).
16.
D. A.
Kirzhnits
,
Sov. Phys. Usp.
30
,
575
(
1987
).
17.
M. V.
Medvedev
,
Phys. Rev. E
59
,
R4766
(
R
) (
1999
).
18.
V. M.
Bannur
,
Phys. Rev. E
73
,
067401
(
2006
).
19.
V. R.
Munirov
and
N. J.
Fisch
,
Phys. Rev. E
100
,
023202
(
2019
).
20.
21.
J.
Klaers
,
F.
Vewinger
, and
M.
Weitz
,
Nat. Phys.
6
,
512
(
2010
).
22.
J.
Klaers
,
J.
Schmitt
,
F.
Vewinger
, and
M.
Weitz
,
Nature
468
,
545
(
2010
).
23.
E. L.
Bolda
,
R. Y.
Chiao
, and
W. H.
Zurek
,
Phys. Rev. Lett.
86
,
416
(
2001
).
24.
D. N.
Sob'yanin
,
Phys. Rev. E
85
,
061120
(
2012
).
25.
D. N.
Sob'yanin
,
Phys. Rev. E
88
,
022132
(
2013
).
26.
Y. S.
Barash
and
V. L.
Ginzburg
,
Sov. Phys. Usp.
18
,
305
(
1975
).
27.
V. B.
Bobrov
,
I. M.
Sokolov
, and
S. A.
Trigger
,
JETP Lett.
101
,
299
(
2015
).
28.
A.
Akhiezer
and
S.
Peletminskii
,
Methods of Statistical Physics
(
Pergamon Press
,
Oxford
,
1981
).
29.
E. S.
Fradkin
, in
Proceedings of the P.N. Lebedev Physical Institute
(
Nauka
,
1965
), Vol.
29
, p.
7
(English translation published by Consultants Bureau, New York, 1967).
30.
A. F.
Alexandrov
,
L. S.
Bogdankevich
, and
A. A.
Rukhadze
,
Principles of Plasma Electrodynamics
(
Springer
,
Heidelberg
,
1984
).
32.
W.-D.
Kraeft
,
D.
Kremp
,
W.
Ebeling
, and
G.
Ropke
,
Quantum Statistics of Charged Particle Systems
(
Akademie-Verlag
,
Berlin
,
1986
).
33.
V. B.
Bobrov
and
S. A.
Trigger
,
Theor. Math. Phys.
192
,
1396
(
2017
).
34.
V. B.
Bobrov
,
S. A.
Maslov
, and
S. A.
Trigger
,
Phys. Plasmas
25
,
072116
(
2018
).
35.
Y. L.
Klimontovich
,
Kinetic Theory of Nonideal Gases and Nonideal Plasma
(
Pergamon Press
,
Oxford
,
1982
).
36.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Tables of Integrals, Series, and Products
(
Academic Press
,
New York
,
1980
).
You do not currently have access to this content.