The generations of zonal flow (ZF) and density (ZD) and their feedback on the resistive drift wave turbulent transport are investigated within the modified Hasegawa-Wakatani model. With proper normalization, the system is only controlled by an effective adiabatic parameter, α, where the ZF dominates the collisional drift wave (DW) turbulence in the adiabatic limit . By conducting direct numerical simulations, we found that the ZF can significantly reduce the transport by trapping the DWs in the vicinities of its extrema for , whereas the ZD itself has little impact on the turbulence but can only assist ZF to further decrease the transport by flattening the local plasma density gradient.
References
1.
P. H.
Diamond
, S.
Itoh
, K.
Itoh
, and T.
Hahm
, “Zonal flows in plasma–a review
,” Plasma Phys. Controlled Fusion
47
, R35
(2005
).2.
A.
Fujisawa
, “A review of zonal flow experiments
,” Nucl. Fusion
49
, 013001
(2009
).3.
K.
Hallatschek
and D.
Biskamp
, “Transport control by coherent zonal flows in the core/edge transitional regime
,” Phys. Rev. Lett.
86
, 1223
(2001
).4.
B.
Scott
, “The geodesic transfer effect on zonal flows in tokamak edge turbulence
,” Phys. Lett. A
320
, 53
–62
(2003
).5.
T.
Hahm
, M.
Beer
, Z.
Lin
, G.
Hammett
, W.
Lee
, and W.
Tang
, “Shearing rate of time-dependent E× B flow
,” Phys. Plasmas
6
, 922
–926
(1999
).6.
N.
Miyato
, J.
Li
, and Y.
Kishimoto
, “Study of a drift wave-zonal mode system based on global electromagnetic landau-fluid itg simulation in toroidal plasmas
,” Nucl. Fusion
45
, 425
(2005
).7.
P.
Guzdar
, R.
Kleva
, and L.
Chen
, “Shear flow generation by drift waves revisited
,” Phys. Plasmas
8
, 459
–462
(2001
).8.
R. L.
Dewar
and R. F.
Abdullatif
, “Zonal flow generation by modulational instability
,” in Frontiers in Turbulence and Coherent Structures
(World Scientific
, 2007
), pp. 415
–430
.9.
A.
Hasegawa
, C. G.
Maclennan
, and Y.
Kodama
, “Nonlinear behavior and turbulence spectra of drift waves and rossby waves
,” Phys. Fluids
22
, 2122
–2129
(1979
).10.
A.
Smolyakov
, P.
Diamond
, and V.
Shevchenko
, “Zonal flow generation by parametric instability in magnetized plasmas and geostrophic fluids
,” Phys. Plasmas
7
, 1349
–1351
(2000
).11.
A.
Smolyakov
, P.
Diamond
, and M.
Malkov
, “Coherent structure phenomena in drift wave–zonal flow turbulence
,” Phys. Rev. Lett.
84
, 491
(2000
).12.
H.
Biglari
, P.
Diamond
, and P.
Terry
, “Influence of sheared poloidal rotation on edge turbulence
,” Phys. Fluids B: Plasma Phys.
2
, 1
–4
(1990
).13.
A.
Balk
, V.
Zakharov
, and S.
Nazarenko
, “Nonlocal turbulence of drift waves
,” Sov. Phys. JETP
71
, 249
–260
(1990
).14.
A.
Balk
, S.
Nazarenko
, and V. E.
Zakharov
, “On the nonlocal turbulence of drift type waves
,” Phys. Lett. A
146
, 217
–221
(1990
).15.
R.
Numata
, R.
Ball
, and R. L.
Dewar
, “Bifurcation in electrostatic resistive drift wave turbulence
,” Phys. Plasmas
14
, 102312
(2007
).16.
A.
Hasegawa
and M.
Wakatani
, “Plasma edge turbulence
,” Phys. Rev. Lett.
50
, 682
(1983
).17.
A. V.
Pushkarev
, W. J.
Bos
, and S. V.
Nazarenko
, “Zonal flow generation and its feedback on turbulence production in drift wave turbulence
,” Phys. Plasmas
20
, 042304
(2013
).18.
Y.
Zhang
and S.
Krasheninnikov
, “Blobs and drift wave dynamics
,” Phys. Plasmas
24
, 092313
(2017
).19.
R.
Hajjar
, P.
Diamond
, and M.
Malkov
, “Dynamics of zonal shear collapse with hydrodynamic electrons
,” Phys. Plasmas
25
, 062306
(2018
).20.
A.
Hasegawa
and K.
Mima
, “Pseudo-three-dimensional turbulence in magnetized nonuniform plasma
,” Phys. Fluids
21
, 87
–92
(1978
).21.
K. J.
Burns
, G. M.
Vasil
, J. S.
Oishi
, D.
Lecoanet
, and B. P.
Brown
, “Dedalus: A flexible framework for numerical simulations with spectral methods
,” Phys. Rev. Res.
2
, 023068
(2020
).22.
Y.
Zhang
and S. I.
Krasheninnikov
, “Effect of neutrals on the anomalous edge plasma transport
,” Plasma Phys. Controlled Fusion
62
, 115018
(2020
).23.
Y.
Zhang
, S. I.
Krasheninnikov
, R.
Masline
, and R. D.
Smirnov
, “Neutral impact on anomalous edge plasma transport and its correlation with divertor plasma detachment
,” Nucl. Fusion
60
, 106023
(2020
).24.
C.-B.
Kim
, B.
Min
, and C.-Y.
An
, “On the effects of nonuniform zonal flow in the resistive-drift plasma
,” Plasma Phys. Controlled Fusion
61
, 035002
(2019
).25.
C.-B.
Kim
, B.
Min
, and C.-Y.
An
, “Localization of the eigenmode of the drift-resistive plasma by zonal flow
,” Phys. Plasmas
25
, 102501
(2018
).26.
H.
Zhu
, Y.
Zhou
, and I.
Dodin
, “Theory of the tertiary instability and the dimits shift from reduced drift-wave models
,” Phys. Rev. Lett.
124
, 055002
(2020
).27.
C.-B.
Kim
, “Suppression of turbulence in the drift-resistive plasma where zonal flow changes direction
,” J. Plasma Phys.
86
, 905860315
(2020
).28.
A.
Smolyakov
and P.
Diamond
, “Generalized action invariants for drift waves-zonal flow systems
,” Phys. Plasmas
6
, 4410
–4413
(1999
).29.
P.
Kaw
, R.
Singh
, and P.
Diamond
, “Coherent nonlinear structures of drift wave turbulence modulated by zonal flows
,” Plasma Phys. Controlled Fusion
44
, 51
(2002
).30.
Y.
Zhang
, S.
Krasheninnikov
, and A.
Smolyakov
, “Different responses of the Rayleigh–Taylor type and resistive drift wave instabilities to the velocity shear
,” Phys. Plasmas
27
, 020701
(2020
).31.
M.
Held
, M.
Wiesenberger
, R.
Kube
, and A.
Kendl
, “Non-oberbeck–boussinesq zonal flow generation
,” Nucl. Fusion
58
, 104001
(2018
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.