A simulation study is presented for a collisional, low-temperature dipole plasma encountered by rarefied, hypersonic neutral gas flow. A global model is developed and averaged over a toroidal control volume to describe the mass and energy exchange between the neutral stream and plasma. Simulations over a large range of magnet and freestream parameters reveal three distinct physical regimes that have significant bearing on the magnitude of plasma/flow interaction. The transitions between these regimes exhibit characteristics of resistive critical ionization, whereby the relative kinetic energy between plasma and neutral gas collisionally heats electrons, driving rapid and complete ionization of the gas. Two regime transitions are observed here with sudden exponential increases in plasma density occurring at velocity thresholds that depend on several energy loss mechanisms. The higher-velocity transition is a classical presentation of critical ionization where flow neutrals are ionized directly by plasma electrons. The other is a unique case in which charge exchange between ions and flow neutrals supplies both the particles and energy required to initiate critical ionization. This transition is distinct from any critical ionization effect reported in literature and indicates the existence of a lower critical velocity governed by collisional and diffusive effects as opposed to ionization energy losses only. Drag force on the magnetic field is considered by examining absorption and deflection of ionized flow by the dipole. The critical ionization thresholds increase the force on the magnet by up to two orders of magnitude compared to aerodynamic drag on an equivalently sized flow impediment.

1.
E. T.
Karlson
,
Phys. Fluids
6
,
708
(
1963
).
2.
O.
Buneman
,
T.
Neubert
, and
K.-I.
Nishikawa
,
IEEE Trans. Plasma Sci.
20
,
810
(
1992
).
3.
A.
Hasegawa
,
L.
Chen
, and
M. E.
Mauel
,
Nucl. Fusion
30
,
2405
(
1990
).
4.
R. M.
Winglee
,
J.
Slough
,
T.
Ziemba
, and
A.
Goodson
,
J. Geophys. Res.: Space Phys.
105
,
21067
, (
2000
).
5.
J.
Slough
,
D.
Kirtley
, and
A.
Pancotti
, in
32nd International Electric Propulsion Conference
(Wiesbaden, Germany,
2011
).
6.
C. L.
Kelly
and
J. M.
Little
, in
IEEE Aerospace Conference
(Big Sky, MT,
2019
).
7.
C. L.
Kelly
and
J. M.
Little
, in
36th International Electric Propulsion Conference
(Vienna, Austria,
2019
).
8.
H.
Alfvén
,
On the Origin of the Solar System
edited by
N. F.
Mott
and
E. C.
Bullard
(
Oxford University Press
,
London
,
1954
).
9.
N.
Brenning
,
Space Sci. Rev.
59
,
209
(
1992
).
11.
S.
Machida
and
C. K.
Goertz
,
J. Geophys. Res.
91
,
11965
, (
1986
).
12.
S.
Machida
and
C. K.
Goertz
,
J. Geophys. Res.
93
,
11495
, (
1988
).
13.
M. A.
Raadu
,
Astrophys. Space Sci.
55
,
125
(
1978
).
14.
W. J.
McNeil
,
S. T.
Lai
, and
E.
Murad
,
J. Geophys. Res.
95
,
10345
, (
1990
).
15.
E.
Möbius
,
K.
Papadopoulos
, and
A.
Piel
,
Planet. Space Sci.
35
,
345
(
1987
).
16.
J.
Little
and
C. L.
Kelly
,
Phys. Plasmas
27
(
11
),
113512
(
2020
).
17.
E. T.
Meier
and
U.
Shumlak
,
Phys. Plasmas
19
,
072508
(
2012
).
18.
J. D.
Jackson
,
Classical Electrodynamics
(
John Wiley & Sons, Inc
.,
New York
,
1962
).
19.
K.
Takahashi
and
A.
Ando
,
Phys. Rev. Lett.
118
,
225002
(
2017
).
20.
S. I.
Krasheninnikov
,
P. J.
Catto
, and
R. D.
Hazeltine
,
Phys. Rev. Lett.
82
,
2689
(
1999
).
21.
J.
Kesner
,
D. T.
Garnier
, and
M. E.
Mauel
,
Phys. Plasmas
18
,
050703
(
2011
).
22.
S. I.
Braginskii
, in Reviews of Plasma Physics (Consultants Bureau, New York, 1965), Vol. 1, p. 205.
23.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2005
).
24.
R. J.
Goldston
and
P. H.
Rutherford
,
Introduction to Plasma Physics
, Vol.
1
(
Institute of Physics Publishing
,
Bristol/Philadelphia
,
1995
).
25.
M. S.
Davis
,
M. E.
Mauel
,
D. T.
Garnier
, and
J.
Kesner
,
Plasma Phys. Controlled Fusion
56
,
095021
(
2014
).
26.
M.
Vellante
,
M.
Piersanti
, and
E.
Pietropaolo
,
J. Geophys. Res.: Space Phys.
119
,
2623
, (
2014
).
27.
A. C.
Hindmarsh
and
L. R.
Petzold
, “
LSODA, ordinary differential equation solver for stiff or non-stiff system
,” NEA, 2005, see https://www.osti.gov/etdeweb/biblio/21352532
28.
D. T.
Garnier
,
A. C.
Boxer
,
J. L.
Ellsworth
,
J.
Kesner
, and
M. E.
Mauel
,
Nucl. Fusion
49
,
055023
(
2009
).
29.
J. F.
McKenzie
and
R. K.
Varma
,
J. Plasma Phys.
25
,
491
(
1981
).
30.
B.
Lehnert
,
Phys. Fluids
9
,
774
(
1966
).
31.
L.
Danielsson
,
Phys. Fluids
13
,
2288
(
1970
).
32.
G.
Himmel
,
E.
Möbius
, and
A.
Piel
, “
Zeitschrift fur Naturforschung—Section A
,”
J. Phys. Sci.
31
,
934
(
1976
).
33.
N.
Venkataramani
and
S. K.
Mattoo
,
Phys. Lett. A
79
,
393
(
1980
).
34.
N.
Brenning
and
I.
Axnäs
,
Astrophys. Space Sci.
144
,
15
(
1988
).
35.
S.
Kobayashi
,
B. N.
Rogers
, and
W.
Dorland
,
Phys. Rev. Lett.
103
,
055003
(
2009
).
36.
Z. R.
Putnam
and
R. D.
Braun
,
J. Spacecr. Rockets
51
,
139
(
2014
).
37.
Y.
Itikawa
,
Phys. Fluids
16
,
831
(
1973
).
38.
K. G.
Harstad
, “
Transport equations for gases and plasmas obtained by the 13-moment method—A summary
,” Report No. NASA-CR-97148, NASA Jet Propulsion Lab, Pasadena, CA,
1968
.
39.
A. V.
Phelps
,
J. Phys. Chem. Ref. Data
20
,
557
(
1991
).
40.
B. M.
Smirnov
,
Introduction to Plasma Physics
(
Mir
,
Moscow
,
1977
).
You do not currently have access to this content.