Binary interactions in relativistic plasma, such as Coulomb and Compton scattering as well as pair creation and annihilation are well known and studied in detail. Triple interactions, namely, relativistic bremsstrahlung, double Compton scattering, radiative pair production, and triple pair production and their inverse processes, are usually considered as emission processes in astrophysical problems, as well as in laboratory plasmas. Their role in plasma kinetics is fundamental [A. G. Aksenov et al., Phys. Rev. Lett. 99, 125003 (2007)]. We present a new conservative scheme for computation of the Uehling–Uhlenbeck collision integral for all triple interactions in relativistic plasma based on direct integration of exact QED matrix elements. Reaction rates for thermal distributions are compared, where possible, with the corresponding analytic expressions, showing good agreement. Our results are relevant for quantitative description of relativistic plasmas out of equilibrium, both under astrophysical and laboratory conditions.

1.
A. G.
Aksenov
,
R.
Ruffini
, and
G. V.
Vereshchagin
, “
Thermalization of nonequilibrium electron-positron-photon plasmas
,”
Phys. Rev. Lett.
99
,
125003
(
2007
).
2.
R.
Ruffini
,
G.
Vereshchagin
, and
S.-S.
Xue
, “
Electron-positron pairs in physics and astrophysics: From heavy nuclei to black holes
,”
Phys. Rep.
487
,
1
140
(
2010
).
3.
G.
Vereshchagin
and
A.
Aksenov
,
Relativistic Kinetic Theory: With Applications in Astrophysics and Cosmology
(
Cambridge University Press
,
2017
).
4.
A. D.
Piazza
,
C.
Müller
,
K. Z.
Hatsagortsyan
, and
C. H.
Keitel
, “
Extremely high-intensity laser interactions with fundamental quantum systems
,”
Rev. Mod. Phys.
84
,
1177
1228
(
2012
).
5.
T. A.
Weaver
, “
Reaction rates in a relativistic plasma
,”
Phys. Rev. A
13
,
1563
1569
(
1976
).
6.
R. J.
Gould
, “
Kinetic theory of relativistic plasmas
,”
Phys. Fluids
24
,
102
107
(
1981
).
7.
R. J.
Gould
, “
Processes in relativistic plasmas
,”
Astrophys. J.
254
,
755
766
(
1982
).
8.
S.
Stepney
, “
Two-body relaxation in relativistic thermal plasmas
,”
Mon. Not. R. Astron. Soc.
202
,
467
481
(
1983
).
9.
P. S.
Coppi
and
R. D.
Blandford
, “
Reaction rates and energy distributions for elementary processes in relativistic pair plasmas
,”
Mon. Not. R. Astron. Soc.
245
,
453
507
(
1990
).
10.
C. D.
Dermer
, “
Binary collision rates of relativistic thermal plasmas. I. Theoretical framework
,”
Astrophys. J.
295
,
28
37
(
1985
).
11.
R.
Svensson
, “
Electron-positron pair equilibria in relativistic plasmas
,”
Astrophys. J.
258
,
335
(
1982
).
12.
A. A.
Zdziarski
, “
Spectra from pair-equilibrium plasmas
,”
Astrophys. J.
283
,
842
847
(
1984
).
13.
G. S.
Bisnovatyi-Kogan
,
Y. B.
Zel'Dovich
, and
R. A.
Syunyaev
, “
Physical processes in a low-density relativistic plasma
,”
Sov. Astron.
15
,
17
(
1971
).
14.
A. P.
Lightman
, “
Relativistic thermal plasmas—Pair processes and equilibria
,”
Astrophys. J.
253
,
842
858
(
1982
).
15.
P. W.
Guilbert
and
S.
Stepney
, “
Pair production, comptonization and dynamics in astrophysical plasmas
,”
Mon. Not. R. Astron. Soc.
212
,
523
544
(
1985
).
16.
R.
Svensson
, “
The pair annihilation process in relativistic plasmas
,”
Astrophys. J.
258
,
321
334
(
1982
).
17.
E.
Haug
, “
Electron-positron bremsstrahlung in mildly relativistic thermal plasmas
,”
Astron. Astrophys.
148
,
386
390
(
1985
).
18.
E.
Haug
, “
Energy loss and mean free path of electrons in a hot thermal plasma
,”
Astron. Astrophys.
191
,
181
185
(
1988
).
19.
A. P.
Lightman
, “
Double Compton emission in radiation dominated thermal plasmas
,”
Astrophys. J.
244
,
392
405
(
1981
).
20.
R. J.
Gould
, “
The cross section for double Compton scattering
,”
Astrophys. J.
285
,
275
278
(
1984
).
21.
J. W.
Motz
,
H. A.
Olsen
, and
H. W.
Koch
, “
Pair production by photons
,”
Rev. Mod. Phys.
41
,
581
639
(
1969
).
22.
Y.-S.
Tsai
, “
Pair production and bremsstrahlung of charged leptons
,”
Rev. Mod. Phys.
46
,
815
851
(
1974
).
23.
J. M.
Jauch
and
F.
Rohrlich
,
The Theory of Photons and Electrons
(
Springer-Verlag
,
1976
).
24.
E.
Haug
, “
Electron-electron bremsstrahlung in a hot plasma
,”
Z. Naturforsch. A
30
,
1546
1552
(
1975
).
25.
E.
Haug
, “
Bremsstrahlung and pair production in the field of free electrons
,”
Z. Naturforsch. A
30
,
1099
1113
(
1975
).
26.
M. S.
Maxon
and
E. G.
Corman
, “
Electron-electron bremsstrahlung from a quantum plasma (Z=1)
,”
Phys. Rev.
163
,
156
161
(
1967
).
27.
M.
Alexanian
, “
Photon bremsstrahlung from an extreme-relativistic electron gas
,”
Phys. Rev.
165
,
253
257
(
1968
).
28.
E.
Haug
, “
Differential cross section of electron-positron bremsstrahlung
,”
Phys. Rev. D
31
,
2120
2128
(
1985
).
29.
E.
Haug
, “
On energy and angular distributions of electrons in triplet production
,”
Z. Naturforsch. A
40
,
1182
1188
(
1985
).
30.
E.
Haug
, “
Simple analytic expressions fot the total cross section for γ-e pair production
,”
Z. Naturforsch. A
36
,
413
414
(
1981
).
31.
A.
Ore
and
J. L.
Powell
, “
Three-photon annihilation of an electron-positron pair
,”
Phys. Rev.
75
,
1963
1963
(
1949
).
32.
A. M.
Frolov
, “
Three-photon annihilation of the electron positron pairs
,”
Phys. Lett. A
372
,
6396
6399
(
2008
).
33.
F.
Mandl
and
T. H. R.
Skyrme
, “
The theory of the double Compton effect
,”
Proc. R. Soc. London, Ser. A
215
,
497
507
(
1952
).
34.
R. J.
Gould
, “
Soft-photon emission effects and radiative corrections for electromagnetic processes at very high energies
,”
Astrophys. J.
230
,
967
973
(
1979
).
35.
J.
Chluba
,
S. Y.
Sazonov
, and
R. A.
Sunyaev
, “
The double Compton emissivity in a mildly relativistic thermal plasma within the soft photon limit
,”
Astron. Astrophys.
468
,
785
795
(
2007
).
36.
A. P.
Lightman
and
D. L.
Band
, “
Relativistic thermal plasmas—Radiation mechanisms
,”
Astrophys. J.
251
,
713
726
(
1981
).
37.
K. S.
Thorne
, “
Relativistic radiative transfer—Moment formalisms
,”
Mon. Not. R. Astron. Soc.
194
,
439
473
(
1981
).
38.
J.
Chluba
,
A.
Ravenni
, and
S. K.
Acharya
, “
Thermalization of large energy release in the early Universe
,” arXiv:2005.11325 (
2020
).
39.
G.
Sarri
,
K.
Poder
,
J. M.
Cole
,
W.
Schumaker
,
A.
di Piazza
,
B.
Reville
,
T.
Dzelzainis
,
D.
Doria
,
L. A.
Gizzi
,
G.
Grittani
,
S.
Kar
,
C. H.
Keitel
,
K.
Krushelnick
,
S.
Kuschel
,
S. P. D.
Mangles
,
Z.
Najmudin
,
N.
Shukla
,
L. O.
Silva
,
D.
Symes
,
A. G. R.
Thomas
,
M.
Vargas
,
J.
Vieira
, and
M.
Zepf
, “
Generation of neutral and high-density electron-positron pair plasmas in the laboratory
,”
Nat. Commun.
6
,
6747
(
2015
).
40.
R.
Duclous
,
J. G.
Kirk
, and
A. R.
Bell
, “
Monte Carlo calculations of pair production in high-intensity laser-plasma interactions
,”
Plasma Phys. Controlled Fusion
53
,
015009
(
2011
).
41.
T.
Moritaka
,
L.
Baiotti
,
A.
Lin
,
L.
Weiwu
,
Y.
Sakawa
,
Y.
Kuramitsu
,
T.
Morita
, and
H.
Takabe
, “
Plasma particle-in-cell simulations with QED reactions for pair production experiments using a high-Z solid target
,”
J. Phys. Conf. Ser.
454
,
012016
(
2013
).
42.
C.
Cercignani
and
G.
Kremer
,
The Relativistic Boltzmann Equation: Theory and Applications
, Progress in Mathematical Physics Vol.
22
(
Birkhäuser Basel
,
2012
).
43.
S.
Groot
,
W.
Leeuwen
, and
C.
Weert
,
Relativistic Kinetic Theory: Principles and Applications
(
North-Holland Publishing Co
.,
1980
).
44.
A.
Pe'er
and
E.
Waxman
, “
Time-dependent numerical model for the emission of radiation from relativistic plasma
,”
Astrophys. J.
628
,
857
866
(
2005
).
45.
M. A.
Prakapenia
,
I. A.
Siutsou
, and
G. V.
Vereshchagin
, “
Numerical scheme for treatment of Uehling-Uhlenbeck equation for two-particle interactions in relativistic plasma
,”
J. Comput. Phys.
373
,
533
544
(
2018
).
46.
J.
Chluba
and
R. A.
Sunyaev
, “
The evolution of CMB spectral distortions in the early universe
,”
Mon. Not. R. Astron. Soc.
419
,
1294
1314
(
2012
).
47.
A. G.
Aksenov
,
M.
Milgrom
, and
V. V.
Usov
, “
Structure of pair winds from compact objects with application to emission from hot bare strange stars
,”
Astrophys. J.
609
,
363
377
(
2004
).
48.
A. G.
Aksenov
,
R.
Ruffini
, and
G. V.
Vereshchagin
, “
Thermalization of pair plasma with proton loading
,”
AIP Conf. Proc.
1111
,
344
350
(
2009
).
49.
A. G.
Aksenov
,
R.
Ruffini
, and
G. V.
Vereshchagin
, “
Thermalization of the mildly relativistic plasma
,”
Phys. Rev. D
79
,
043008
(
2009
).
50.
A. G.
Aksenov
,
R.
Ruffini
, and
G. V.
Vereshchagin
, “
Kinetics of the mildly relativistic plasma and GRBs
,”
AIP Conf. Proc.
1205
,
11
16
(
2010
).
51.
A. G.
Aksenov
,
R.
Ruffini
, and
G. V.
Vereshchagin
, “
Pair plasma relaxation time scales
,”
Phys. Rev. E
81
,
046401
(
2010
).
52.
A.
Benedetti
,
R.
Ruffini
, and
G.
Vereshchagin
, “
Phase space evolution of pairs created in strong electric fields
,”
Phys. Lett. A
377
,
206
215
(
2013
).
53.
M. A.
Prakapenia
,
I. A.
Siutsou
, and
G. V.
Vereshchagin
, “
Thermalization of electron-positron plasma with quantum degeneracy
,”
Phys. Lett. A
383
,
306
310
(
2019
).
54.
E. A.
Uehling
, “
Transport phenomena in Einstein-Bose and Fermi-Dirac gases. II
,”
Phys. Rev.
46
,
917
929
(
1934
).
55.
E. A.
Uehling
and
G. E.
Uhlenbeck
, “
Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I
,”
Phys. Rev.
43
,
552
561
(
1933
).
56.
M. A.
Prakapenia
and
G. V.
Vereshchagin
, “
Bose-Einstein condensation in relativistic plasma
,”
Europhys. Lett.
128
,
50002
(
2020
).
57.
M. A.
Prakapenia
and
G. V.
Vereshchagin
, “
Pauli blocking effects in thermalization of relativistic plasma
,”
Phys. Lett. A
384
,
126679
(
2020
).
58.
The quantum state is defined not only by momentum, but also by the spin projection. For isotropic distributions, complete averaging over spins is performed and quantum states are denoted by momentum implicitly summing over all possible spin states with the use of spin multiplier g=2s+1 for massive particles and g=2(1) for massless particles with spin s > 0 (s = 0). Therefore in this work, plasma particles are assumed to be unpolarized.
59.
J.
Chluba
, “
Spectral distortions of the cosmic microwave background
,” Ph.D. thesis (
Ludwig-Maximilians-Universität
,
München
,
2005
).
60.
V. B.
Berestetskii
,
E. M.
Lifshitz
, and
V. B.
Pitaevskii
,
Quantum Electrodynamics
, 2nd ed. (
Elsevier
,
1982
).
61.
L. D.
Landau
and
E. M.
Lifshits
,
The Classical Theory of Fields
, 4th ed. (
Butterworth-Heinemann
,
1994
).
62.
J. M.
Jauch
and
F.
Rohrlich
,
Texts and Monographs in Physics
, 2nd ed. (
Springer
,
New York
,
1976
).
63.
E.
Haug
and
W.
Nakel
,
The Elementary Process of Bremsstrahlung
(
World Scientific Publishing Co
.,
Singapore
,
2004
), ISBN 981–238-578–9.
64.
J.
Ehlers
, “
Survey of general relativity theory
,” in
Relativity, Astrophysics and Cosmology
(
Springer
,
1973
), pp.
1
125
.
65.
Alternatively, cylindrical coordinates can be used
, if anisotropy is present in the problem, see, e.g., Ref. 52.
66.
G.
Hall
and
J. M.
Watt
,
Modern Numerical Methods for Ordinary Differential Equations
(
Oxford University Press
,
New York
,
1976
).
67.
In order to satisfy exactly momentum conservation, additional splitting is needed in the angular grid.52 
68.
R.
Svensson
, “
Steady mildly relativistic thermal plasmas—Processes and properties
,”
Mon. Not. R. Astron. Soc.
209
,
175
208
(
1984
).
You do not currently have access to this content.