The MARBLE project is a novel inertial confinement fusion platform for studying the development of atomic mixing and temperature equilibration in inertial confinement fusion implosions and their impact on thermonuclear burn. Experiments involve the laser-driven implosion of capsules filled with deuterated engineered foams whose pores are filled with a gaseous mixture of hydrogen and tritium. By varying the size of the foam pores, we can study the timescale of the development of atomic mix relative to the development of thermal equilibrium between species. In contrast, previous separated reactant experiments have only provided information on the total amount of mix mass. We report on the series of MARBLE experiments [first reported in Haines et al., Nat. Commun. 11, 544 (2020)] performed on the University of Rochester's OMEGA laser facility and detailed and highly resolved three-dimensional radiation-hydrodynamic simulations of the implosions. In both the experimental and simulation results, we observe that the reactants do not achieve thermal equilibrium during the course of the implosion except in atomically mixed regions—i.e., that atomic mixing develops faster than thermal equilibration between species. The results suggest that ion temperature variations in the mixture are at least as important as reactant concentration variations for determining the fusion reaction rates.

1.
J.
Nuckolls
,
L.
Wood
,
A.
Thiessen
, and
G.
Zimmerman
, “
Laser compression of matter to super-high densities: CTR applications
,”
Nature
239
,
139
(
1972
).
2.
B. A.
Hammel
,
H. A.
Scott
,
S. P.
Regan
,
C.
Cerjan
,
D. S.
Clark
,
M. J.
Edwards
,
R.
Epstein
,
S. H.
Glenzer
,
S. W.
Haan
,
N.
Izumi
,
J. A.
Koch
,
G. A.
Kyrala
,
O. L.
Landen
,
S. H.
Langer
,
K.
Peterson
,
V. A.
Smalyuk
,
L. J.
Suter
, and
D. E.
Wilson
, “
Diagnosing and controlling mix in National Ignition Facility implosion experiments
,”
Phys. Plasmas
18
,
056310
(
2011
).
3.
S. P.
Regan
,
R.
Epstein
,
B. A.
Hammel
,
L. J.
Suter
,
J.
Ralph
,
H.
Scott
,
M. A.
Barrios
,
D. K.
Bradley
,
D. A.
Callahan
,
C.
Cerjan
,
G. W.
Collins
,
S. N.
Dixit
,
T.
Döppner
,
M. J.
Edwards
,
D. R.
Farley
,
S.
Glenn
,
S. H.
Glenzer
,
I. E.
Golovkin
,
S. W.
Haan
,
A.
Hamza
,
D. G.
Hicks
,
N.
Izumi
,
J. D.
Kilkenny
,
J. L.
Kline
,
G. A.
Kyrala
,
O. L.
Landen
,
T.
Ma
,
J. J.
MacFarlane
,
R. C.
Mancini
,
R. L.
McCrory
,
N. B.
Meezan
,
D. D.
Meyerhofer
,
A.
Nikroo
,
K. J.
Peterson
,
T. C.
Sangster
,
P.
Springer
, and
R. P. J.
Town
, “
Hot-spot mix in ignition-scale implosions on the NIF
,”
Phys. Plasmas
19
(
5
),
056307
(
2012
).
4.
S. P.
Regan
,
R.
Epstein
,
B. A.
Hammel
,
L. J.
Suter
,
H. A.
Scott
,
M. A.
Barrios
,
D. K.
Bradley
,
D. A.
Callahan
,
C.
Cerjan
,
G. W.
Collins
,
S. N.
Dixit
,
T.
Döppner
,
M. J.
Edwards
,
D. R.
Farley
,
K. B.
Fournier
,
S.
Glenn
,
S. H.
Glenzer
,
I. E.
Golovkin
,
S. W.
Haan
,
A.
Hamza
,
D. G.
Hicks
,
N.
Izumi
,
O. S.
Jones
,
J. D.
Kilkenny
,
J. L.
Kline
,
G. A.
Kyrala
,
O. L.
Landen
,
T.
Ma
,
J. J.
MacFarlane
,
A. J.
MacKinnon
,
R. C.
Mancini
,
R. L.
McCrory
,
N. B.
Meezan
,
D. D.
Meyerhofer
,
A.
Nikroo
,
H.-S.
Park
,
J.
Ralph
,
B. A.
Remington
,
T. C.
Sangster
,
V. A.
Smalyuk
,
P. T.
Springer
, and
R. P. J.
Town
, “
Hot-spot mix in ignition-scale inertial confinement fusion targets
,”
Phys. Rev. Lett.
111
,
045001
(
2013
).
5.
T.
Ma
,
P. K.
Patel
,
N.
Izumi
,
P. T.
Springer
,
M. H.
Key
,
L. J.
Atherton
,
L. R.
Benedetti
,
D. K.
Brad1ey
,
D. A.
Callahan
,
P. M.
Celliers
,
C. J.
Cerjan
,
D. S.
Clark
,
E. L.
Dewald
,
S. N.
Dixit
,
T.
Döppner
,
D. H.
Edgell
,
R.
Epstein
,
S.
Glenn
,
G.
Grim
,
S. W.
Haan
,
B. A.
Hammel
,
D.
Hicks
,
W. W.
Hsing
,
O. S.
Jones
,
S. F.
Khan
,
J. D.
Kilkenny
,
J. L.
Kline
,
G. A.
Kyrala
,
O. L.
Landen
,
S.
LePape
,
B. J.
MacGowan
,
A. J.
Mackinnon
,
A. G.
MacPhee
,
N. B.
Meezan
,
J. D.
Moody
,
A.
Pak
,
T.
Parham
,
H. S.
Park
,
J. E.
Ralph
,
S. P.
Regan
,
B. A.
Remington
,
H. F.
Robey
,
J. S.
Ross
,
B. K.
Spears
,
V.
Smalyuk
,
L. J.
Suter
,
R.
Tommasini
,
R. P.
Town
,
S. V.
Weber
,
J. D.
Lindl
,
M. J.
Edwards
,
S. H.
Glenzer
, and
E. I.
Moses
, “
Onset of hydrodynamic mix in high-velocity highly compressed inertial confinement fusion implosions
,”
Phys. Rev. Lett.
111
,
085004
(
2013
).
6.
T.
Ma
,
P. K.
Patel
,
N.
Izumi
,
P. T.
Springer
,
M. H.
Key
,
L. J.
Atherton
,
M. A.
Barrios
,
L. R.
Benedetti
,
R.
Bionta
,
E.
Bond
,
D. K.
Bradley
,
J.
Caggiano
,
D. A.
Callahan
,
D. T.
Casey
,
P. M.
Celliers
,
C. J.
Cerjan
,
J. A.
Church
,
D. S.
Clark
,
E. L.
Dewald
,
T. R.
Dittrich
,
S. N.
Dixit
,
T.
Döppner
,
R.
Dylla-Spears
,
D. H.
Edgell
,
R.
Epstein
,
J.
Field
,
D. N.
Fittinghoff
,
J. A.
Frenje
,
M.
Gatu Johnson
,
S.
Glenn
,
S. H.
Glenzer
,
G.
Grim
,
N.
Guler
,
S. W.
Haan
,
B. A.
Hammel
,
R.
Hatarik
,
H. W.
Herrmann
,
D.
Hicks
,
D. E.
Hinkel
,
L. F.
Berzak Hopkins
,
W. W.
Hsing
,
O. A.
Hurricane
,
O. S.
Jones
,
R.
Kauffman
,
S. F.
Khan
,
J. D.
Kilkenny
,
J. L.
Kline
,
B.
Kozioziemski
,
A.
Kritcher
,
G. A.
Kyrala
,
O. L.
Landen
,
J. D.
Lindl
,
S.
Le Pape
,
B. J.
MacGowan
,
A. J.
Mackinnon
,
A. G.
MacPhee
,
N. B.
Meezan
,
F. E.
Merrill
,
J. D.
Moody
,
E. I.
Moses
,
S. R.
Nagel
,
A.
Nikroo
,
A.
Pak
,
T.
Parham
,
H.-S.
Park
,
J. E.
Ralph
,
S. P.
Regan
,
B. A.
Remington
,
H. F.
Robey
,
M. D.
Rosen
,
J. R.
Rygg
,
J. S.
Ross
,
J. D.
Salmonson
,
J.
Sater
,
D.
Sayre
,
M. B.
Schneider
,
D.
Shaughnessy
,
H.
Sio
,
B. K.
Spears
,
V.
Smalyuk
,
L. J.
Suter
,
R.
Tommasini
,
R. P. J.
Town
,
P. L.
Volegov
,
A.
Wan
,
S. V.
Weber
,
K.
Widmann
,
C. H.
Wilde
,
C.
Yeamans
, and
M. J.
Edwards
, “
The role of hot spot mix in the low-foot and high-foot implosions on the NIF
,”
Phys. Plasmas
24
,
056311
(
2017
).
7.
D. S.
Clark
,
C. R.
Weber
,
J. L.
Milovich
,
J. D.
Salmonson
,
A. L.
Kritcher
,
S. W.
Haan
,
B. A.
Hammel
,
D. E.
Hinkel
,
O. A.
Hurricane
,
O. S.
Jones
,
M. M.
Marinak
,
P. K.
Patel
,
H. F.
Robey
,
S. M.
Sepke
, and
M. J.
Edwards
,
Phys. Plasmas
23
,
056302
(
2016
).
8.
B. M.
Haines
,
S. A.
Yi
,
R. E.
Olson
,
S. F.
Khan
,
G. A.
Kyrala
,
A. B.
Zylstra
,
P. A.
Bradley
,
R. R.
Peterson
,
J. L.
Kline
,
R. J.
Leeper
, and
R. C.
Shah
,
Phys. Plasmas
24
,
072709
(
2017
).
9.
J.
Edwards
,
M.
Marinak
,
T.
Dittrich
,
S.
Haan
,
J.
Sanchez
,
J.
Klingmann
, and
J.
Moody
, “
The effects of fill tubes on the hydrodynamics of ignition targets and prospects for ignition
,”
Phys. Plasmas
12
,
056318
(
2005
).
10.
T. R.
Dittrich
,
O. A.
Hurricane
,
L. F.
Berzak-Hopkins
,
D. A.
Callahan
,
D. T.
Casey
,
D.
Clark
,
E. L.
Dewald
,
T.
Doeppner
,
S. W.
Haan
,
B. A.
Hammel
,
J. A.
Harte
,
D. E.
Hinkel
,
B. J.
Kozioziemski
,
A. L.
Kritcher
,
T.
Ma
,
A.
Nikroo
,
A. E.
Pak
,
T. G.
Parham
,
H.-S.
Park
,
P. K.
Patel
,
B. A.
Remington
,
J. D.
Salmonson
,
P. T.
Springer
,
C. R.
Weber
,
G. B.
Zimmerman
, and
J. L.
Kline
, “
Simulations of fill tube effects on the implosion of high-foot NIF ignition capsules
,”
Report No. LLNL-PROC-681979
, Lawrence Livermore National Laboratory,
2016
.
11.
B. M.
Haines
,
R. E.
Olson
,
W.
Sweet
,
S. A.
Yi
,
A. B.
Zylstra
,
P. A.
Bradley
,
F.
Elsner
,
H.
Huang
,
R.
Jimenez
,
J. L.
Kline
,
C.
Kong
,
G. A.
Kyrala
,
R. J.
Leeper
,
R.
Paguio
,
S.
Pajoom
,
R. R.
Peterson
,
M.
Ratledge
, and
N.
Rice
, “
Robustness to hydrodynamic instabilities in indirectly-driven layered capsule implosions
,”
Phys. Plasmas
26
,
012707
(
2019
).
12.
B. M.
Haines
,
W. S.
Daughton
,
E. N.
Loomis
,
E. C.
Merritt
,
D. S.
Montgomery
,
J. P.
Sauppe
, and
J. L.
Kline
, “
Computational study of instability and fill tube mitigation strategies for double shell implosions
,”
Phys. Plasmas
26
,
102705
(
2019
).
13.
C. R.
Weber
,
D. S.
Clark
,
A.
Pak
,
N.
Alfonso
,
B.
Bachmann
,
L. F.
Berzak Hopkins
,
T.
Bunn
,
J.
Crippen
,
L.
Divol
,
T.
Dittrich
,
A. L.
Kritcher
,
O. L.
Landen
,
S.
Le Pape
,
A. G.
MacPhee
,
E.
Marley
,
L. P.
Masse
,
J. L.
Milovich
,
A.
Nikroo
,
P. K.
Patel
,
L. A.
Pickworth
,
N.
Rice
,
V. A.
Smalyuk
, and
M.
Stadermann
, “
Mixing in ICF implosions on the National Ignition Facility caused by the fill-tube
,”
Phys. Plasmas
27
,
032703
(
2020
).
14.
B. M.
Haines
,
D. S.
Clark
,
C. R.
Weber
,
M. J.
Edwards
,
S. H.
Batha
, and
J. L.
Kline
, “
Cross-code comparison of the impact of the fill tube on high yield implosions on the National Ignition Facility
,”
Phys. Plasmas
27
,
082703
(
2020
).
15.
I. V.
Igumenshchev
,
F. J.
Marshall
,
J. A.
Marozas
,
V. A.
Smalyuk
,
R.
Epstein
,
V. N.
Goncharov
,
T. J. B.
Collins
,
T. C.
Sangster
, and
S.
Skupsky
, “
The effects of target mounts in direct-drive implosions on OMEGA
,”
Phys. Plasmas
16
,
082701
(
2009
).
16.
D. S.
Clark
,
M. M.
Marinak
,
C. R.
Weber
,
D. C.
Eder
,
S. W.
Haan
,
B. A.
Hammel
,
D. E.
Hinkel
,
O. S.
Jones
,
J. L.
Milovich
,
P. K.
Patel
,
H. F.
Robey
,
J. D.
Salmonson
,
S. M.
Sepke
, and
C. A.
Thomas
, “
Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign
,”
Phys. Plasmas
22
,
022703
(
2015
).
17.
B.
Hammel
,
R.
Tommasini
,
D. S.
Clark
,
J.
Field
,
M.
Stadermann
, and
C.
Weber
, “
Simulations and experiments of the growth of the ‘tent’ perturbation in NIF ignition implosions
,”
J. Phys.: Conf. Ser.
717
,
012021
(
2016
).
18.
B. M.
Haines
,
G. P.
Grim
,
J. R.
Fincke
,
R. C.
Shah
,
C. J.
Forrest
,
K.
Silverstein
,
F. J.
Marshall
,
M.
Boswell
,
M. M.
Fowler
,
R. A.
Gore
,
G.
Jungman
,
A.
Klein
,
R. S.
Rundberg
,
M. J.
Steinkamp
, and
J. B.
Wilhelmy
, “
Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments
,”
Phys. Plasmas
23
,
072709
(
2016
).
19.
M.
Gatu Johnson
,
P. J.
Adrian
,
K. S.
Anderson
,
B. D.
Appelbe
,
J. P.
Chittenden
,
A. J.
Crilly
,
D.
Edgell
,
C. J.
Forrest
,
J. A.
Frenje
,
V. Y.
Glebov
,
B. M.
Haines
,
I.
Igumenshchev
,
D.
Jacobs-Perkins
,
R.
Janezic
,
N. V.
Kabadi
,
J. P.
Knauer
,
B.
Lahmann
,
O. M.
Mannion
,
F. J.
Marshall
,
T.
Michel
,
F. H.
Séguin
,
R.
Shah
,
C.
Stoeckl
,
C. A.
Walsh
, and
R. D.
Petrasso
, “
Impact of stalk on directly driven inertial confinement fusion implosions
,”
Phys. Plasmas
27
,
032704
(
2020
).
20.
D. S.
Clark
,
S. W.
Haan
,
A. W.
Cook
,
M. J.
Edwards
,
B. A.
Hammel
,
J. M.
Koning
, and
M. M.
Marinak
, “
Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs
,”
Phys. Plasmas
18
,
082701
(
2011
).
21.
Y.
Zhou
, “
Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I
,”
Phys. Rep.
720–722
,
1
136
(
2017
).
22.
Y.
Zhou
, “
Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II
,”
Phys. Rep.
723–725
,
1
160
(
2017
).
23.
R. E.
Chrien
,
N. M.
Hoffman
,
J. D.
Colvin
,
C. J.
Keane
,
O. L.
Landen
, and
B. A.
Hammel
, “
Fusion neutrons from the gas–pusher interface in deuterated-shell inertial confinement fusion implosions
,”
Phys. Plasmas
5
,
768
(
1998
).
24.
D. D.
Meyerhofer
,
J. A.
Delettrez
,
R.
Epstein
,
V. Y.
Glebov
,
V. N.
Goncharov
,
R. L.
Keck
,
R. L.
McCrory
,
P. W.
McKenty
,
F. J.
Marshall
,
P. B.
Radha
,
S. P.
Regan
,
S.
Roberts
,
W.
Seka
,
S.
Skupsky
,
V. A.
Smalyuk
,
C.
Sorce
,
C.
Stoeckl
,
J. M.
Soures
,
R. P. J.
Town
,
B.
Yaakobi
,
J. D.
Zuegel
,
J.
Frenje
,
C. K.
Li
,
R. D.
Petrasso
,
F. H.
Séguin
,
K.
Fletcher
,
S.
Padalino
,
C.
Freeman
,
N.
Izumi
,
R.
Lerche
,
T. W.
Phillips
, and
T. C.
Sangster
, “
Core performance and mix in direct-drive spherical implosions with high uniformity
,”
Phys. Plasmas
8
,
2251
(
2001
).
25.
P. B.
Radha
,
J.
Delettrez
,
R.
Epstein
,
V.
Yu Glebov
,
R.
Keck
,
R. L.
McCrory
,
P.
McKenty
,
D. D.
Meyerhofer
,
F.
Marshall
,
S. P.
Regan
,
S.
Roberts
,
T. C.
Sangster
,
W.
Seka
,
S.
Skupsky
,
V.
Smalyuk
,
C.
Sorce
,
C.
Stoeckl
,
J.
Soures
,
R. P. J.
Town
,
B.
Yaakobi
,
J.
Frenje
,
C. K.
Li
,
R.
Petrasso
,
F.
Séguin
,
K.
Fletcher
,
S.
Padalino
,
C.
Freeman
,
N.
Izumi
,
R.
Lerche
, and
T. W.
Phillips
, “
Inference of mix in direct-drive implosions on OMEGA
,”
Phys. Plasmas
9
,
2208
(
2002
).
26.
C. K.
Li
,
F. H.
Séguin
,
J. A.
Frenje
,
S.
Kurebayashi
,
R. D.
Petrasso
,
D. D.
Meyerhofer
,
J. M.
Soures
,
J. A.
Delettrez
,
V. Y.
Glebov
,
P. B.
Radha
,
S. P.
Regan
,
S.
Roberts
,
T. C.
Sangster
, and
C.
Stoeckl
, “
Effects of fuel-shell mix upon direct-drive, spherical implosions on OMEGA
,”
Phys. Rev. Lett.
89
,
165002
(
2002
).
27.
J. R.
Rygg
,
J. A.
Frenje
,
C. K.
Li
,
F. H.
Séguin
,
R. D.
Petrasso
,
V. Y.
Glebov
,
D. D.
Meyerhofer
,
T. C.
Sangster
, and
C.
Stoeckl
, “
Time-dependent nuclear measurements of mix in inertial confinement fusion
,”
Phys. Rev. Lett.
98
,
215002
(
2007
).
28.
D. C.
Wilson
,
P. S.
Ebey
,
T. C.
Sangster
,
W. T.
Shmayda
,
V. Y.
Glebov
, and
R. A.
Lerche
, “
Atomic mix in directly driven inertial confinement implosions
,”
Phys. Plasmas
18
,
112707
(
2011
).
29.
V. A.
Smalyuk
,
R. E.
Tipton
,
J. E.
Pino
,
D. T.
Casey
,
G. P.
Grim
,
B. A.
Remington
,
D. P.
Rowley
,
S. V.
Weber
,
M.
Barrios
,
L. R.
Benedetti
,
D. L.
Bleul
,
D. K.
Bradley
,
J. A.
Caggiano
,
D. A.
Callahan
,
C. J.
Cerjan
,
D. S.
Clark
,
D. H.
Edgell
,
M. J.
Edwards
,
J. A.
Frenje
,
M.
Gatu-Johnson
,
V. Y.
Glebov
,
S.
Glenn
,
S. W.
Haan
,
A.
Hamza
,
R.
Hatarik
,
W. W.
Hsing
,
N.
Izumi
,
S.
Khan
,
J. D.
Kilkenny
,
J.
Kline
,
J.
Knauer
,
O. L.
Landen
,
T.
Ma
,
J. M.
McNaney
,
M.
Mintz
,
A.
Moore
,
A.
Nikroo
,
A.
Pak
,
T.
Parham
,
R.
Petrasso
,
D. B.
Sayre
,
M. B.
Schneider
,
R.
Tommasini
,
R. P.
Town
,
K.
Widmann
,
D. E.
Wilson
, and
C. B.
Yeamans
, “
Measurements of an ablator-gas atomic mix in indirectly driven implosions at the National Ignition Facility
,”
Phys. Rev. Lett.
112
,
025002
(
2014
).
30.
D. T.
Casey
,
V. A.
Smalyuk
,
R. E.
Tipton
,
J. E.
Pino
,
G. P.
Grim
,
B. A.
Remington
,
D. P.
Rowley
,
S. V.
Weber
,
M.
Barrios
,
L. R.
Benedetti
,
D. L.
Bleuel
,
E. J.
Bond
,
D. K.
Bradley
,
J. A.
Caggiano
,
D. A.
Callahan
,
C. J.
Cerjan
,
K. C.
Chen
 et al., “
Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility
,”
Phys. Plasmas
21
,
092705
(
2014
).
31.
H. G.
Rinderknecht
,
H.
Sio
,
C. K.
Li
,
A. B.
Zylstra
,
M. J.
Rosenberg
,
P.
Amendt
,
J.
Delettrez
,
C.
Bellei
,
J. A.
Frenje
,
M.
Gatu Johnson
,
F. H.
Séguin
,
R. D.
Petrasso
,
R.
Betti
,
V. Y.
Glebov
,
D. D.
Meyerhofer
,
T. C.
Sangster
,
C.
Stoeckl
,
O.
Landen
,
V. A.
Smalyuk
,
S.
Wilks
,
A.
Greenwood
, and
A.
Nikroo
, “
First observations of nonhydrodynamic mix at the fuel-shell interface in shock-driven inertial confinement implosions
,”
Phys. Rev. Lett.
112
,
135001
(
2014
).
32.
R.
Sacks
,
R.
Tipton
, and
F.
Graziani
, “
Proposed pushered single shell capsule design for the investigation of mid/high Z mix on the NIF
,”
J. Phys.: Conf. Ser.
717
,
012076
(
2016
).
33.
M. J.
Schmitt
,
H. W.
Herrmann
,
Y. H.
Kim
,
A. M.
McEvoy
,
A.
Zylstra
,
B. A.
Hammel
,
S. M.
Sepke
,
A.
Leatherland
, and
S.
Gales
, “
Using HT and DT gamma rays to diagnose mix in Omega capsule implosions
,”
J. Phys.: Conf. Ser.
717
,
012048
(
2016
).
34.
A. B.
Zylstra
,
N. M.
Hoffman
,
H. W.
Herrmann
,
M. J.
Schmitt
,
Y. H.
Kim
,
K.
Meaney
,
A.
Leatherland
,
S.
Gales
,
C.
Forrest
,
V. Y.
Glebov
,
M.
Schoff
,
M.
Hoppe
, and
N.
Ravelo
, “
Diffusion-dominated mixing in moderate convergence implosions
,”
Phys. Rev. E
97
,
061201(R)
(
2018
).
35.
M. R.
Douglas
,
J. R.
Fincke
,
G. P.
Grim
,
B. M.
Haines
,
T. J.
Murphy
,
R. E.
Olson
,
R. C.
Shah
,
J. M.
Smidt
,
I. L.
Tregillis
, and
J. A.
Oertel
, “
Overview of the marble experiment
,”
Bull. Amer. Phys. Soc.
59
,
DPP.GO5.3
(
2014
); available at http://meetings.aps.org/link/BAPS.2014.DPP.GO5.3.
36.
T. J.
Murphy
,
M. R.
Douglas
,
J. R.
Fincke
,
R. E.
Olson
,
J. A.
Cobble
,
B. M.
Haines
,
C. E.
Hamilton
,
M. N.
Lee
,
J. A.
Oertel
,
N. A. G.
Parra-Vasquez
,
R. B.
Randolph
,
D. W.
Schmidt
,
R. C.
Shah
,
J. M.
Smidt
, and
I. L.
Tregillis
, “
Progress in the development of the MARBLE platform for studying thermonuclear burn in the presence of heterogeneous mix on OMEGA and the National Ignition Facility
,”
J. Phys.: Conf. Ser.
717
,
012072
(
2016
).
37.
T. J.
Murphy
,
M. R.
Douglas
,
T.
Cardenas
,
J. H.
Cooley
,
M. A.
Gunderson
,
B. M.
Haines
,
C. E.
Hamilton
,
Y.
Kim
,
M. N.
Lee
,
J. A.
Oertel
,
R. E.
Olson
,
R. B.
Randolph
,
R. C.
Shah
, and
J. M.
Smidt
, “
Results from MARBLE DT experiments on the National Ignition Facility: Implosion of foam-filled capsules for studying thermonuclear burn in the presence of heterogeneous mix
,”
Bull. Amer. Phys. Soc.
62
,
DPP.UO8.1
(
2017
); available at http://meetings.aps.org/link/BAPS.2017.DPP.UO8.1.
38.
B. M.
Haines
,
R. C.
Shah
,
J. M.
Smidt
,
B. J.
Albright
,
T.
Cardenas
,
M. R.
Douglas
,
C.
Forrest
,
V. Y.
Glebov
,
M. A.
Gunderson
,
C. E.
Hamilton
,
K. C.
Henderson
,
Y.
Kim
,
M. N.
Lee
,
T. J.
Murphy
,
J. A.
Oertel
,
R. E.
Olson
,
B. M.
Patterson
,
R. B.
Randolph
, and
D. W.
Schmidt
, “
Observation of persistent species temperature separation in inertial confinement fusion mixtures
,”
Nat. Commun.
11
,
544
(
2020
).
39.
T. J.
Murphy
,
B. J.
Albright
,
M. R.
Douglas
,
T.
Cardenas
,
J. H.
Cooley
,
T. H.
Day
,
N. A.
Denissen
,
R. A.
Gore
,
M. A.
Gunderson
,
J. R.
Haack
,
B. M.
Haines
,
C. E.
Hamilton
,
E. P.
Hartouni
,
Y.
Kim
,
P. M.
Kozlowski
,
M. N.
Lee
,
J. A.
Oertel
,
R. E.
Olson
,
R. B.
Randolph
,
R. C.
Shah
,
J. M.
Smidt
,
D. N.
Woods
, and
L.
Yin
, “
Results from single-shock marble experiments studying thermonuclear burn in the presence of heterogeneous mix on the National Ignition Facility
,”
High Energy Density Phys.
(submitted) (
2020
).
40.
R. E.
Olson
,
T. J.
Murphy
,
B. M.
Haines
,
M. R.
Douglas
,
B. J.
Albright
,
M.
Gunderson
,
Y.
Kim
,
T.
Cardenas
,
C.
Hamilton
, and
B.
Randolph
, “
Development of the marble experimental platform at the National Ignition Facility
,”
Phys. Plasmas
(to be published).
41.
C. E.
Hamilton
,
M. N.
Lee
, and
A. N. G.
Parra-Vasquez
, “
Development of hierarchical, tunable pore size polymer foams for ICF targets
,”
Fusion Sci. Technol.
70
(
2
),
226
229
(
2016
).
42.
P. E.
Dimotakis
, “
The mixing transition in turbulent flows
,”
J. Fluid Mech.
409
,
69
98
(
2000
).
43.
D. L.
Youngs
, “
Three-dimensional numerical simulation of turbulent mixing by Rayleigh–Taylor instability
,”
Phys. Fluids A
3
,
1312
(
1991
).
44.
Y.
Zhou
,
T. T.
Clark
,
D. S.
Clark
,
S. G.
Glendinning
,
M. A.
Skinner
,
C. M.
Huntington
,
O. A.
Hurricane
,
A. M.
Dimits
, and
B. A.
Remington
, “
Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities
,”
Phys. Plasmas
26
,
080901
(
2019
).
45.
B. M.
Haines
,
F. F.
Grinstein
, and
J. D.
Schwarzkopf
, “
Reynolds-averaged Navier–Stokes initialization and benchmarking in shock-driven turbulent mixing
,”
J. Turbul.
14
(
2
),
46
70
(
2013
).
46.
B. J.
Olson
and
J. A.
Greenough
, “
Comparison of two- and three-dimensional simulations of miscible Richtmyer-Meshkov instability with multimode initial conditions
,”
Phys. Fluids
26
,
101702
(
2014
).
47.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
,
297
(
1960
).
48.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
,
101
(
1972
).
49.
S.
Balasubramanian
,
G. C.
Orlicz
,
K. P.
Prestridge
, and
B. J.
Balakumar
, “
Experimental study of initial condition dependence on Richtmyer-Meshkov instability in the presence of reshock
,”
Phys. Fluids
24
,
034103
(
2012
).
50.
S. R.
Nagel
,
K. S.
Raman
,
C. M.
Huntington
,
S. A.
MacLaren
,
P.
Wang
,
M. A.
Barrios
,
T.
Baumann
,
J. D.
Bender
,
L. R.
Benedetti
,
D. M.
Doane
,
S.
Felker
,
P.
Fitzsimmons
,
K. A.
Flippo
,
J. P.
Holder
,
D. N.
Kaczala
,
T. S.
Perry
,
R. M.
Seugling
,
L.
Savage
, and
Y.
Zhou
, “
A platform for studying the Rayleigh-Taylor and Richtmyer-Meshkov instabilities in a planar geometry at high energy density at the National Ignition Facility
,”
Phys. Plasmas
24
,
072704
(
2017
).
51.
D.
Besnard
,
F. H.
Harlow
,
R. M.
Rauenzahn
, and
C.
Zemach
, “
Turbulence transport equations for variable-density turbulence and their relations to two field models
,”
Report No. LA-UR-12303
, Los Alamos National Laboratory,
1992
.
52.
J. D.
Schwarzkopf
,
D.
Livescu
,
R. A.
Gore
,
R. M.
Rauenzahn
, and
J. R.
Ristorcelli
, “
Application of a second-moment closure model to mixing processes involving multicomponent miscible fluids
,”
J. Turbul.
12
,
1
35
(
2011
).
53.
N. A.
Denissen
,
B.
Rollin
,
J. M.
Reisner
, and
M. J.
Andrews
, “
The tilted rocket rig: A Rayleigh-Taylor test case for RANS models
,”
J. Fluids Eng.
136
,
091301
(
2014
).
54.
B. M.
Haines
,
F. F.
Grinstein
, and
J. R.
Fincke
, “
Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance
,”
Phys. Rev. E
89
,
053302
(
2014
).
55.
B. J.
Olson
and
R. J. R.
Williams
, “
Mixing layer growth from localized perturbations: Feature mixing
,”
Report No. LLNL-PRES-754561
, Lawrence Livermore National Laboratory,
2018
.
56.
S.
Le Pape
,
L. F.
Berzak Hopkins
,
L.
Divol
,
A.
Pak
,
E. L.
Dewald
,
S.
Bhandarkar
,
L. R.
Bennedetti
,
T.
Bunn
,
J.
Biener
,
J.
Crippen
,
D.
Casey
,
D.
Edgell
,
D. N.
Fittinghoff
,
M.
Gatu-Johnson
,
C.
Goyon
,
S.
Haan
,
R.
Hatarik
,
M.
Havre
,
D. D.-M.
Ho
,
N.
Izumi
,
J.
Jaquez
,
S. F.
Khan
,
G. A.
Kyrala
,
T.
Ma
,
A. J.
Mackinnon
,
A. G.
MacPhee
,
B. J.
MacGowan
,
N. B.
Meezan
,
J.
Milovich
,
M.
Millot
,
P.
Michel
,
S. R.
Nagel
,
A.
Nikroo
,
P.
Patel
,
J.
Ralph
,
J. S.
Ross
,
N. G.
Rice
,
D.
Strozzi
,
M.
Stadermann
,
P.
Volegov
,
C.
Yeamans
,
C.
Weber
,
C.
Wild
,
D.
Callahan
, and
O. A.
Hurricane
, “
Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility
,”
Phys. Rev. Lett.
120
,
245003
(
2018
).
57.
B.
Bachmann
,
J. E.
Ralph
,
A. B.
Zylstra
,
S. A.
MacLaren
,
T.
Döppner
,
D. O.
Gericke
,
G. W.
Collins
,
O. A.
Hurricane
,
T.
Ma
,
J. R.
Rygg
,
H. A.
Scott
,
S. A.
Yi
, and
P. K.
Patel
, “
Localized mix-induced radiative cooling in a capsule implosion at the National Ignition Facility
,”
Phys. Rev. E
101
,
033205
(
2020
).
58.
H. G.
Rinderknecht
,
M. J.
Rosenberg
,
C. K.
Li
,
N. M.
Hoffman
,
G.
Kagan
,
A. B.
Zylstra
,
H.
Sio
,
J. A.
Frenje
,
M.
Gatu Johnson
,
F. H.
Séguin
,
R. D.
Petrasso
,
P.
Amendt
,
C.
Bellei
,
S.
Wilks
,
J.
Delettrez
,
V. Y.
Glebov
,
C.
Stoeckl
,
T. C.
Sangster
,
D. D.
Meyerhofer
, and
A.
Nikroo
, “
Ion thermal decoupling and species separation in shock-driven implosions
,”
Phys. Rev. Lett.
114
,
025001
(
2015
).
59.
A.
Inglebert
,
B.
Canaud
, and
O.
Larroche
, “
Species separation and modification of neutron diagnostics in inertial-confinement fusion
,”
Europhys. Lett.
107
(
6
),
65003
(
2014
).
60.
A. W.
Cook
and
J. J.
Riley
, “
A subgrid model for equilibrium chemistry in turbulent flows
,”
Phys. Fluids
6
,
2868
(
1994
).
61.
T.
Poinsot
and
D.
Veynante
,
Theoretical and Numerical Combustion
(
Edwards
,
Philadelphia
,
2001
).
62.
Turbulent Reacting Flows
, edited by
P. A.
Libby
and
F. A.
Williams
(
Springer Verlag
,
1980
).
63.
P. E.
Dimotakis
, “
Turbulent mixing
,”
Annu. Rev. Fluid Mech.
37
,
329
356
(
2005
).
64.
J. R.
Ristorcelli
, “
Passive scalar mixing: Analytic study of time scale ratio, variance and mix rate
,”
Phys. Fluids A
3
,
1269
1277
(
2006
).
65.
J.
Bakosi
and
J. R.
Ristorcelli
, “
Exploring the beta distribution in variable-density turbulent mixing
,”
J. Turbul.
11
,
N37
(
2010
).
66.
J.
Bakosi
and
J. R.
Ristorcelli
, “
Extending the Langevin model to variable-density pressure-gradient-driven turbulence
,”
J. Turbul.
12
(
19
),
1
33
(
2011
).
67.
J. R.
Ristorcelli
, “
Exact statistical results for binary mixing and reaction in variable density turbulence
,”
Phys. Fluids
29
,
020705
(
2017
).
68.
B. M.
Haines
,
F. F.
Grinstein
,
L.
Welser-Sherrill
, and
J.
Fincke
, “
Simulations of material mixing in laser-driven reshock experiments
,”
Phys. Plasmas
20
,
022309
(
2013
).
69.
B. M.
Haines
,
F. F.
Grinstein
,
L.
Welser-Sherrill
,
J.
Fincke
, and
F. W.
Doss
, “
Simulations ensemble for a laser-driven shear experiment
,”
Phys. Plasmas
20
,
092301
(
2013
).
70.
B. M.
Haines
,
J. R.
Ristorcelli
, and
F. F.
Grinstein
, “
Two parameter assumed PDFs for variable density turbulent mixing
,”
Report No. LA-UR-12-27011
, Los Alamos National Laboratory,
2012
.
71.
B. E.
Morgan
,
B. J.
Olson
,
W. J.
Black
, and
J. A.
McFarland
, “
Large-eddy simulation and Reynolds-averaged Navier-Stokes modeling of a reacting Rayleigh-Taylor mixing layer in a spherical geometry
,”
Phys. Rev. E
98
,
033111
(
2018
).
72.
J. D.
Huba
,
NRL Plasma Formulary
(
Naval Research Laboratory
,
Washington, DC
,
2013
).
73.
L.
Spitzer
and
R.
Härm
, “
Transport phenomena in a completely ionized gas
,”
Phys. Rev.
89
,
977
981
(
1953
).
74.
Y.
Zhou
, “
Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations
,”
Phys. Plasmas
14
,
082701
(
2007
).
75.
A.
Pak
,
L.
Divol
,
C. R.
Weber
,
L. F.
Berzak Hopkins
,
D. S.
Clark
,
E. L.
Dewald
,
D. N.
Fittinghoff
,
V.
Geppert-Kleinrath
,
M.
Hohenberger
,
S.
Le Pape
,
T.
Ma
,
A. G.
MacPhee
,
D. A.
Mariscal
,
E.
Marley
,
A. S.
Moore
,
L. A.
Pickworth
,
P. L.
Volegov
,
C.
Wilde
,
O. A.
Hurricane
, and
P. K.
Patel
, “
Impact of localized radiative loss on inertial confinement fusion implosions
,”
Phys. Rev. Lett.
124
,
145001
(
2020
).
76.
Y.
Zhou
,
W. H.
Cabot
, and
B.
Thornber
, “
Asymptotic behavior of the mixed mass in Rayleigh-Taylor and Richtmyer-Meshkov instability induced flows
,”
Phys. Plasmas
23
,
052712
(
2016
).
77.
B. M.
Patterson
,
K.
Henderson
, and
Z.
Smith
, “
Measure of morphological and performance properties in polymeric silicone foams by x-ray tomography
,”
J. Mat. Sci.
48
(
5
),
1986
1996
(
2013
).
78.
B. M.
Patterson
,
K.
Henderson
,
R. D.
Gilbertson
,
S.
Tornga
,
N. L.
Cordes
,
M. E.
Chavez
, and
Z.
Smith
, “
Morphological and performance measures of polyurethane foams using x-ray CT and mechanical testing
,”
Microsc. Microanal.
20
(
4
),
1284
1293
(
2014
).
79.
N. E.
Lanier
,
C.
Hamilton
, and
J. M.
Taccetti
, “
A monochromatic x-ray imaging system for characterizing low-density foam
,”
Rev. Sci. Instrum.
83
,
10E521
(
2012
).
80.
R. B.
Randolph
,
J. A.
Oertel
,
T.
Cardenas
,
C. E.
Hamilton
,
D. W.
Schmidt
,
B. M.
Patterson
,
F.
Fierro
, and
D.
Capelli
, “
Dry-machining of aerogel foams, CH foams, and specially engineered foams using turn-milling techniques
,”
Fusion Sci. Technol.
73
(
2
),
187
193
(
2018
).
81.
R. B.
Randolph
,
J. A.
Oertel
,
D. W.
Schmidt
,
M. N.
Lee
,
B. M.
Patterson
,
K. C.
Henderson
, and
C. E.
Hamilton
, “
Process development and micro-machining of MARBLE foam-cored rexolite hemi-shell ablator capsules
,”
Fusion Sci. Technol.
70
(
2
),
230
(
2016
).
82.
M.
Gittings
,
R.
Weaver
,
M.
Clover
,
T.
Betlach
,
N.
Byrne
,
R.
Coker
,
E.
Dendy
,
R.
Hueckstaedt
,
K.
New
,
W. R.
Oakes
,
D.
Ranta
, and
R.
Stefan
,
Comput. Sci. Discovery
1
,
015005
(
2008
).
83.
B. M.
Haines
,
C. H.
Aldrich
,
J. M.
Campbell
,
R. M.
Rauenzahn
, and
C. A.
Wingate
, “
High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions
,”
Phys. Plasmas
24
,
052701
(
2017
).
84.
R. E.
Olson
,
R. J.
Leeper
,
J. L.
Kline
,
A. B.
Zylstra
,
S. A.
Yi
,
J.
Biener
,
T.
Braun
,
B. J.
Kozioziemski
,
J. D.
Sater
,
C.
Walters
,
R. R.
Peterson
,
P. A.
Bradley
,
B. M.
Haines
,
L.
Yin
,
L. F.
Berzak Hopkins
,
N. B.
Meezan
,
G. A.
Kyrala
,
R. C.
Shah
,
H. W.
Herrmann
,
D. C.
Wilson
,
M. M.
Biener
,
A. V.
Hamza
,
A.
Nikroo
, and
S. A.
Batha
,
Phys. Rev. Lett.
117
(
24
),
245001
(
2016
).
85.
A. B.
Zylstra
,
S. A.
Yi
,
B. M.
Haines
,
R. E.
Olson
,
R. J.
Leeper
,
T.
Braun
,
J.
Biener
,
J. L.
Kline
,
S. H.
Batha
,
L.
Berzak Hopkins
,
S.
Bhandarkar
,
P. A.
Bradley
,
J.
Crippen
,
M.
Farrell
,
D.
Fittinghoff
,
H. W.
Hermann
,
H.
Huang
,
S.
Khan
,
C.
Kong
,
B. J.
Kozioziemski
,
G. A.
Kyrala
,
T.
Ma
,
N. B.
Meezan
,
F.
Merrill
,
A.
Nikroo
,
R. R.
Peterson
,
N.
Rice
,
J. D.
Sater
,
R. C.
Shah
,
M.
Stadermann
,
P.
Volegov
,
C.
Walters
, and
D. C.
Wilson
,
Phys. Plasmas
25
,
056304
(
2018
).
86.
J. P.
Sauppe
,
B. M.
Haines
,
S.
Palaniyappan
,
P. A.
Bradley
,
S. H.
Batha
,
E. N.
Loomis
, and
J. L.
Kline
, “
Modeling of direct-drive cylindrical implosion experiments with an Eulerian radiation-hydrodynamics code
,”
Phys. Plasmas
26
,
042701
(
2019
).
87.
C. A.
Di Stefano
,
F. W.
Doss
,
A. M.
Rasmus
,
K. A.
Flippo
, and
B. M.
Haines
, “
The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments
,”
Phys. Plasmas
26
,
052708
(
2019
).
88.
A.
Harten
,
P. D.
Lax
, and
B.
van Leer
,
SIAM Rev.
25
(
1
),
35
61
(
1983
).
89.
A. M.
Winslow
,
J. Comp. Phys.
117
(
2
),
262
273
(
1995
).
90.
J.
Colgan
,
D. P.
Kilcrease
,
N. H.
Magee
,
M. E.
Sherrill
,
J.
Abdallah
, Jr.
,
P.
Hakel
,
C. J.
Fontes
,
J. A.
Guzik
, and
K. A.
Mussack
, “
A new generation of Los Alamos opacity tables
,”
Astrophys. J.
817
,
116
(
2016
).
91.
J.
Abdallah
, Jr.
and
R. E. H.
Clark
, “
TOPS: A multigroup opacity code
,”
Report No. LA-10454-M
, Los Alamos National Laboratory,
1985
.
92.
S. P.
Lyon
and
J. D.
Johnson
, “
SESAME: The Los Alamos National Laboratory equation of state database
,”
Report No. LA-UR-92-3407
, Los Alamos National Laboratory,
1992
.
93.
Y. T.
Lee
and
R. M.
More
,
Phys. Fluids
27
,
1273
(
1984
).
94.
D.
Munro
and
S.
Weber
, “
Electron thermal conduction in LASNEX
,”
Report No. UCRL-ID-119541
, Lawrence Livermore National Laboratory,
1994
.
95.
J. A.
Marozas
,
M.
Hohenberger
,
M. J.
Rosenberg
,
D.
Turnbull
,
T. J. B.
Collins
,
P. B.
Radha
,
P. W.
McKenty
,
J. D.
Zuegel
,
F. J.
Marshall
,
S. P.
Regan
,
T. C.
Sangster
,
W.
Seka
,
E. M.
Campbell
,
V. N.
Goncharov
,
M. W.
Bowers
,
J.-M. G.
Di Nicola
,
G.
Erbert
,
B. J.
MacGowan
,
L. J.
Pelz
, and
S. T.
Yang
, “
First observation of cross-beam energy transfer mitigation for direct-drive inertial confinement fusion implosions using wavelength detuning at the National Ignition Facility
,”
Phys. Rev. Lett.
120
,
085001
(
2018
).
96.
J. A.
Marozas
,
M.
Hohenberger
,
M. J.
Rosenberg
,
D.
Turnbull
,
T. J. B.
Collins
,
P. B.
Radha
,
P. W.
McKenty
,
J. D.
Zuegel
,
F. J.
Marshall
,
S. P.
Regan
,
T. C.
Sangster
,
W.
Seka
,
E. M.
Campbell
,
V. N.
Goncharov
,
M. W.
Bowers
,
J.-M. G.
Di Nicola
,
G.
Erbert
,
B. J.
MacGowan
,
L. J.
Pelz
,
J.
Moody
, and
S. T.
Yang
, “
Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions
,”
Phys. Plasmas
25
,
056314
(
2018
).
97.
B. M.
Haines
,
D. E.
Keller
,
J. A.
Marozas
,
P. W.
McKenty
,
K. S.
Anderson
,
T. J. B.
Collins
,
W. W.
Dai
,
M. L.
Hall
,
S.
Jones
,
M. D.
McKay
, Jr.
,
R. M.
Rauenzahn
, and
D. N.
Woods
, “
Coupling laser physics to radiation-hydrodynamics
,”
Comput. Fluids
201
,
104478
(
2020
).
98.
C. R.
Weber
,
D. S.
Clark
,
A. W.
Cook
,
L. E.
Busby
, and
H. R.
Robey
, “
Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation
,”
Phys. Rev. E
89
,
053106
(
2014
).
99.
B. M.
Haines
,
E. L.
Vold
,
K.
Molvig
,
C.
Aldrich
, and
R.
Rauenzahn
, “
The effects of plasma diffusion and viscosity on turbulent instability growth
,”
Phys. Plasmas
21
,
092306
(
2014
).
100.
E. L.
Vold
,
A. S.
Joglekar
,
M. I.
Ortega
,
R.
Moll
,
D.
Fenn
, and
K.
Molvig
, “
Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations
,”
Phys. Plasmas
22
(
11
),
112708
(
2015
).
101.
S.
Davidovits
and
N. J.
Fisch
, “
Sudden viscous dissipation of compressing turbulence
,”
Phys. Rev. Lett.
116
,
105004
(
2016
).
102.
G.
Viciconte
,
B.-J.
Gréa
, and
F. S.
Godeferd
, “
Self-similar regimes of turbulence in weakly coupled plasmas under compression
,”
Phys. Rev. E
97
,
023201
(
2018
).
103.
G.
Kagan
and
X.-Z.
Tang
, “
Thermo-diffusion in inertially confined plasmas
,”
Phys. Lett. A
378
,
1531
(
2014
).
104.
C.
Ticknor
,
J. D.
Kress
,
L. A.
Colins
,
J.
Clérouin
,
P.
Arnault
, and
A.
Decoster
, “
Transport properties of an asymmetric mixture in the dense plasma regime
,”
Phys. Rev. E
93
,
063208
(
2016
).
105.
F. F.
Grinstein
,
L. G.
Margolin
, and
W. J.
Rider
, eds.
Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics
(
Cambridge University Press
,
New York
, 2nd printing,
2010
).
106.
D. N.
Woods
,
B. M.
Haines
,
Y.
Kim
,
P.
Kozlowski
,
T. J.
Murphy
,
B. J.
Albright
,
C. D.
Stefano
,
T.
Day
,
T.
Cardenas
,
D.
Barnak
,
R. E.
Olson
,
M. A.
Gunderson
, and
M. R.
Douglas
, “
Modeling shock wave speed in MARBLE Foam
,”
Bull. Amer. Phys. Soc.
64
,
UO5.00005
(
2019
); available at https://meetings.aps.org/Meeting/DPP19/Session/UO5.5.
107.
Y.
Kim
,
T. J.
Murphy
,
P. M.
Kozlowski
,
L. M.
Green
,
B. M.
Haines
,
T. H.
Day
,
T.
Cardenas
,
D. N.
Woods
,
J. M.
Smidt
,
M. R.
Douglas
,
S.
Jones
,
J.
Velechovsky
,
R. E.
Olson
,
R. A.
Gore
, and
B. J.
Albright
, “
Experimental validation of shock propagation through a foam with macro-pores
,”
Phys. Plasmas
(submitted) (
2020
).
108.
D.
Ranjan
,
J.
Oakley
, and
R.
Bonazza
, “
Shock-bubble interactions
,”
Annu. Rev. Fluid Mech.
43
,
117
140
(
2011
).
109.
R. E.
Olson
,
R. J.
Leeper
,
A.
Nobile
, and
J. A.
Oertel
, “
Preheat effects on shock propagation in indirect-drive inertial confinement fusion ablator materials
,”
Phys. Rev. Lett.
91
,
235002
(
2003
).
110.
G. K.
Batchelor
,
The Theory of Homogeneous Turbulence
(
Cambridge University Press
,
Cambridge
,
1953
).
111.
K. A.
Flippo
,
F. W.
Doss
,
E. C.
Merritt
,
B. G.
DeVolder
,
C. A.
Di Stefano
,
P. A.
Bradley
,
D.
Capelli
,
T.
Cardenas
,
T. R.
Desjardins
,
F.
Fierro
,
C. M.
Huntington
,
J. L.
Kline
,
L.
Kot
,
S.
Kurien
,
E. N.
Loomis
,
S. A.
MacLaren
,
T. J.
Murphy
,
S. R.
Nagel
,
T. S.
Perry
,
R. B.
Randolph
,
A.
Rasmus
, and
D. W.
Schmidt
, “
Late-time mixing and turbulent behavior in high-energy-density shear experiments at high Atwood numbers
,”
Phys. Plasmas
25
,
056315
(
2018
).
112.
B.
Appelbe
and
J.
Chittenden
, “
Relativistically correct DD and DT neutron spectra
,”
High Energy Density Phys.
11
,
30
35
,
2014
.
113.
L.
Yin
,
B. J.
Albright
,
E. L.
Vold
,
D.
Nystrom
,
R. F.
Bird
, and
K. J.
Bowers
, “
Plasma kinetic effects on interfacial mix and burn rates in multi-spatial dimensions
,”
Phys. Plasmas
26
,
062302
(
2019
).
114.
T. J.
Murphy
,
B. M.
Haines
,
R. E.
Olson
,
R. C.
Shah
,
M. R.
Douglas
,
B. J.
Albright
,
D. J.
Schlossberg
,
E. P.
Hartouni
, and
B. D.
Appelbe
, “
Flows induced by time-dependent drive asymmetry in an inertial confinement fusion capsule implosion on the National Ignition Facility
,”
Phys. Rev. Lett.
(submitted) (
2020
).
You do not currently have access to this content.