Even after 50 years of development, narrowband high-power microwave (HPM) source technologies remain the focus of much research due to intense interest in innovative applications of HPMs in fields such as directed energy, space propulsion, and high-power radar. A few decades ago, the main aim of investigations in this field was to enhance the output power of a single HPM source to tens or hundreds of gigawatts, but this goal has proven difficult due to physical limitations. Therefore, recent research into HPM sources has focused on five main targets: phase locking and power combination, high power efficiency, compact sources with a low or no external magnetic field, high pulse energy, and high-power millimeter-wave generation. Progress made in these aspects of narrowband HPM sources over the last decade is analyzed and summarized in this paper. There is no single type of HPM source capable of excellent performance in all five aspects. Specifically, high pulse energy cannot be achieved together with high power efficiency. The physical difficulties of high power generation in the millimeter wave band are discussed. Semiconductor-based HPM sources and metamaterial (MTM) vacuum electron devices (VEDs) are also commented on here. Semiconductor devices have the advantage of smart frequency agility, but they have low power density and high cost. MTM VEDs have the potential to be high power efficiency HPM sources in the low frequency band. Moreover, problems relating to narrowband HPM source lifetime and stability, which are the important determinants of the real-world applicability of these sources, are also discussed.

1.
J.
Benford
,
J. A.
Swegle
, and
E.
Schamiloglu
,
High Power Microwaves
, 2nd ed. (
Taylor & Francis
,
New York
,
2007
).
2.
J.
Benford
,
J. A.
Swegle
, and
E.
Schamiloglu
,
High Power Microwaves
, 3rd ed. (
Taylor & Francis
,
New York
,
2016
).
3.
J. A.
Nation
,
Appl. Phys. Lett.
17
,
491
(
1970
).
4.
Y.
Carmel
,
J.
Ivers
,
R. E.
Kribel
, and
J.
Nation
,
Phys. Rev. Lett.
33
,
1278
(
1974
).
5.
L. D.
Bacon
and
L. F.
Rinehart
,
A Brief Technology Survey of High-Power Microwave Sources
(
Sandia National Laboratories
,
Albuquerque, NM
,
2001
).
6.
J.
Benford
,
IEEE Trans. Plasma Sci.
36
,
569
(
2008
).
7.
A.
Blyakhman
,
D.
Clunie
,
R.
Harris
,
G.
Mesyats
,
M.
Petelin
,
G.
Postoenko
, and
B.
Wardrop
, in
2007 IEEE Radar Conference
(
IEEE
,
Waltham, MA
,
2007
), pp.
61
64
.
8.
C.
Caryotakis
,
IEEE Trans. Plasma Sci.
22
,
683
(
1994
).
9.
S. H.
Gold
and
G. S.
Nusinovich
,
Rev. Sci. Instrum.
68
,
3945
(
1997
).
10.
J. H.
Booske
,
Phys. Plasmas
15
,
055502
(
2008
).
11.
J.
Benford
and
G.
Benford
,
IEEE Trans. Plasma Sci.
25
,
311
(
1997
).
12.
E. M.
Walling
,
High Power Microwaves: Strategic and Operational Implications for Warfare
(
Defense Technical Information Center
,
Fort Belvoir, VA
,
2000
).
13.
A.
Feickert
,
U.S. Army Weapons Related Directed Energy (DE) Programs: Background and Potential Issues for Congress
(
Congressional Research Service
,
Washington, DC
,
2018
), p.
35
.
14.
G.
Caryotakis
,
High Power Klystrons: Theory and Practice at the Stanford Linear Accelerator Center Part I
(
Stanford Linear Accelerator Center
,
Menlo Park, CA
,
2004
).
15.
E. B.
Abubakirov
,
A. N.
Denisenko
,
M. I.
Fuks
,
N. G.
Kolganov
,
N. F.
Kovalev
,
M. I.
Petelin
,
A. V.
Savelyev
,
E.
Schamiloglu
,
E. I.
Soluyanov
, and
V. V.
Yastrebov
,
IEEE Trans. Plasma Sci.
30
,
1041
(
2002
).
16.
D.
Shiffler
,
J. D.
Ivers
,
G. S.
Kerslick
,
J. A.
Nation
, and
L.
Schachter
,
Appl. Phys. Lett.
58
,
899
(
1991
).
17.
D.
Shiffler
,
J. A.
Nation
,
L.
Schachter
,
J. D.
Ivers
, and
G. S.
Kerslick
,
J. Appl. Phys.
70
,
106
(
1991
).
18.
Y. Y.
Lau
,
M.
Friedman
,
J.
Karll
, and
V.
Serlin
,
IEEE Trans. Plasma Sci.
18
,
553
(
1990
).
19.
Z.
Qi
,
J.
Zhang
,
Q.
Zhang
,
H.
Zhong
,
L.
Xu
, and
L.
Yang
,
IEEE Electron Device Lett.
37
,
782
(
2016
).
20.
J.
Ju
,
J.
Zhang
,
Z.
Qi
,
J.
Yang
,
T.
Shu
,
J.
Zhang
, and
H.
Zhong
,
Sci. Rep.
6
,
30657
(
2016
).
21.
Z.
Liu
,
H.
Huang
,
X.
Jin
, and
L.
Lei
,
IEEE Trans. Plasma Sci.
42
,
3419
(
2014
).
22.
Z.
Liu
,
H.
Huang
,
L.
Lei
,
X.
Jin
,
L.
Zhu
,
G.
Wang
,
H.
He
,
Y.
Wu
,
Y.
Ge
,
H.
Yuan
, and
Z.
Chen
,
Phys. Plasmas
22
,
093105
(
2015
).
23.
W.
Woo
,
J.
Benford
,
D.
Fittinghoff
,
B.
Harteneck
,
D.
Price
,
R.
Smith
, and
H.
Sze
,
J. Appl. Phys.
65
,
861
(
1989
).
24.
J.
Benford
,
H.
Sze
,
W.
Woo
,
R. R.
Smith
, and
B.
Harteneck
,
Phys. Rev. Lett.
62
,
969
(
1989
).
25.
A. F.
Krupnov
,
Int. J. Infrared Millimeter Waves
22
,
1
(
2001
).
26.
R. Z.
Xiao
,
C. H.
Chen
,
W.
Song
,
X. W.
Zhang
,
J.
Sun
,
Z. M.
Song
,
L. J.
Zhang
, and
L. G.
Zhang
,
J. Appl. Phys.
110
,
013301
(
2011
).
27.
Y.
Teng
,
W.
Song
,
J.
Sun
,
R.
Xiao
,
Z.
Song
,
L.
Zhang
,
Z.
Zhang
,
L.
Zhang
,
Y.
Zhang
,
J.
Li
, and
J.
Fang
,
J. Appl. Phys.
111
,
043303
(
2012
).
28.
W.
Song
,
J.
Sun
,
H.
Shao
,
R.
Xiao
,
C.
Chen
, and
G.
Liu
,
J. Appl. Phys.
111
,
023302
(
2012
).
29.
J.
Browning
,
S.
Fernandez-Gutierrez
,
M. C.
Lin
,
D. N.
Smithe
, and
J.
Watrous
,
Appl. Phys. Lett.
104
,
233507
(
2014
).
30.
N. M.
Ryskin
,
V. N.
Titov
, and
O. V.
Umantsiva
,
IEEE Trans. Plasma Sci.
44
,
1270
(
2016
).
31.
Y.
Wu
,
Z. H.
Li
, and
Z.
Xu
,
Phys. Plasmas
22
,
113102
(
2015
).
32.
R.
Xiao
,
Z.
Song
,
Y.
Deng
, and
C.
Chen
,
Phys. Plasmas
21
,
093108
(
2014
).
33.
R.
Xiao
,
Y.
Deng
,
Y.
Wang
,
Z.
Song
,
J.
Li
,
J.
Sun
, and
C.
Chen
,
Appl. Phys. Lett.
107
,
133502
(
2015
).
34.
V. V.
Rostov
,
A. A.
Elchaninov
,
I. V.
Romanchenko
, and
M. I.
Yalandin
,
Appl. Phys. Lett.
100
,
224102
(
2012
).
35.
M. I.
Yalandin
,
M. S.
Pedos
,
V. V.
Rostov
,
I. V.
Romanchenko
,
S. N.
Rukin
,
K. A.
Sharypov
,
S. A.
Shunailov
, and
M. R.
Ulmaskulov
,
EPJ Web Conf.
149
,
01014
(
2017
).
36.
K. A.
Sharypov
,
A. A.
El'chaninov
,
G. A.
Mesyats
,
M. S.
Pedos
,
I. V.
Romancheko
,
V. V.
Rostov
,
S. N.
Rukin
,
V. G.
Shpak
,
S. A.
Shunailov
,
M. R.
Ul'masculov
, and
M. I.
Yalandin
,
Appl. Phys. Lett.
103
,
134103
(
2013
).
37.
N. S.
Ginzburg
,
A. W.
Cross
,
A. A.
Golovanov
,
G. A.
Mesyats
,
M. S.
Pedos
,
A. D. R.
Phelps
,
I. V.
Romanchenko
,
V. V.
Rostov
,
S. N.
Rukin
,
K. A.
Sharypov
,
V. G.
Shpak
,
S. A.
Shunailov
,
M. R.
Ulmaskulov
,
M. I.
Yalandin
, and
I. V.
Zotova
,
Phys. Rev. Lett.
115
,
114802
(
2015
).
38.
M. I.
Fuks
and
E.
Schamiloglu
,
Phys. Rev. Lett.
122
,
224801
(
2019
).
39.
R.
Xiao
,
C.
Chen
,
J.
Sun
,
X. W.
Zhang
, and
L. J.
Zhang
,
Appl. Phys. Lett.
98
,
101502
(
2011
).
40.
R.
Xiao
,
C.
Chen
,
P.
Wu
,
Z.
Song
, and
J.
Sun
,
J. Appl. Phys.
114
,
214503
(
2013
).
41.
D.
Andreev
,
A.
Kuskov
, and
E.
Schamiloglu
,
Matter Radiat. Extremes
4
,
067201
(
2019
).
42.
M. I.
Fuks
,
N. F.
Kovalev
,
A. D.
Andreev
, and
E.
Schamiloglu
,
IEEE Trans. Plasma Sci.
34
,
620
(
2006
).
43.
M.
Daimon
and
W.
Jiang
,
Appl. Phys. Lett.
91
,
191503
(
2007
).
44.
M.
Fuks
and
E.
Schamiloglu
,
Phys. Rev. Lett.
95
,
205101
(
2005
).
45.
M.
Fuks
,
S.
Prasad
, and
E.
Schamiloglu
,
IEEE Trans. Plasma Sci.
44
,
1298
(
2016
).
46.
M.
Liu
,
C.
Liu
,
Z.
Wang
,
W.
Jiang
, and
E.
Schamiloglu
,
IEEE Trans. Plasma Sci.
44
,
2852
(
2016
).
47.
C.
Leach
,
S.
Prasad
,
M. I.
Fuks
,
J.
Buchenauer
,
J. W.
McConaha
, and
E.
Schamiloglu
,
IEEE Trans. Plasma Sci.
45
,
282
(
2017
).
48.
M. I.
Fuks
and
E.
Schamiloglu
,
IEEE Trans. Plasma Sci.
38
,
1302
(
2010
).
49.
D.-F.
Shi
,
B.-L.
Qian
,
H.-G.
Wang
,
W.
Li
, and
G.-X.
Du
,
Sci. Rep.
7
,
1491
(
2017
).
50.
D.-F.
Shi
,
B.-L.
Qian
,
H.-G.
Wang
,
W.
Li
, and
G.-X.
Du
,
J. Phys. D
49
,
465104
(
2016
).
51.
R.
Xiao
,
C.
Chen
,
X.
Zhang
, and
J.
Sun
,
J. Appl. Phys.
105
,
053306
(
2009
).
52.
R. Z.
Xiao
,
X. W.
Zhang
,
L. J.
Zhang
,
X. Z.
Li
,
L. G.
Zhang
,
W.
Song
,
Y. M.
Hu
,
J.
Sun
,
S. F.
Huo
,
C. H.
Chen
,
Q. Y.
Zhang
, and
G. Z.
Liu
,
Laser Part. Beams
28
,
505
(
2010
).
53.
B. V.
Alyokhin
,
A. E.
Dubinov
,
V. D.
Selemir
,
O. A.
Shamro
,
K. V.
Shibalko
,
N. V.
Stepanov
, and
V. E.
Vatrunin
,
IEEE Trans. Plasma Sci.
22
,
945
(
1994
).
54.
W.
Jiang
,
K.
Woolverton
,
J.
Dickens
, and
M.
Kristiansen
,
IEEE Trans. Plasma Sci.
27
,
1538
(
1999
).
55.
M.
Elfsberg
,
T.
Hurtig
,
A.
Larsson
,
C.
Moller
, and
S. E.
Nyholm
,
IEEE Trans. Plasma Sci.
36
,
688
(
2008
).
56.
J.
Zhang
,
X.
Ge
,
J.
Zhang
,
J.
He
,
Y.
Fan
,
Z.
Li
,
Z.
Jin
,
L.
Gao
,
J.
Ling
, and
Z.
Qi
,
Matter Radiat. Extremes
1
,
163
(
2016
).
57.
A.
Roy
,
A.
Patel
,
R.
Menon
,
A.
Sharma
,
D. P.
Chakravarthy
, and
D. S.
Patil
,
Phys. Plasmas
18
,
103108
(
2011
).
58.
Y.-W.
Fan
,
X.-Y.
Wang
,
Z.-C.
Zhang
,
T.
Xun
, and
H.-W.
Yang
,
Vacuum
128
,
39
(
2016
).
59.
J.
Ling
,
J.
Zhang
,
J.
He
, and
T.
Jiang
,
Phys. Plasmas
21
,
023114
(
2014
).
60.
L. M.
Guo
,
T.
Shu
,
Z. Q.
Li
, and
J. C.
Ju
,
Phys. Plasmas
24
,
123102
(
2017
).
61.
L. M.
Guo
,
T.
Shu
,
Z. Q.
Li
,
J. C.
Ju
,
A. K.
Li
,
W. Y.
Fan
,
J. M.
Gao
, and
L. B.
Yan
,
J. Appl. Phys.
124
,
103302
(
2018
).
62.
Y. B.
Cao
,
J. D.
Zhang
, and
J. T.
He
,
Phys. Plasmas
16
,
083102
(
2009
).
63.
M. J.
Arman
,
IEEE Trans. Plasma Sci.
24
,
964
(
1996
).
64.
F. C.
Dang
,
X. P.
Zhang
,
H. H.
Zhong
,
Y. M.
Li
, and
Z. M.
Qi
,
Phys. Plasmas
21
,
063307
(
2014
).
65.
F. C.
Dang
,
X. P.
Zhang
,
J.
Zhang
,
J. C.
Ju
, and
H.
Zhong
,
J. Appl. Phys.
121
,
123305
(
2017
).
66.
F. C.
Dang
,
X. P.
Zhang
,
H. H.
Zhong
,
J.
Zhang
, and
J. C.
Ju
,
Phys. Plasmas
23
,
073113
(
2016
).
67.
F. J.
Agee
,
IEEE Trans. Plasma Sci.
26
,
235
(
1998
).
68.
R. J.
Barker
and
E.
Schamiloglu
,
High Power Microwave Sources and Technologies
(
IEEE Press/Wiley
,
New York, NY
,
2001
), pp.
77
115
.
69.
J.
Zhang
,
Z.
Jin
,
J.
Yang
,
D.
Zhang
,
T.
Shu
,
J.
Zhang
, and
H.
Zhong
,
IEEE Trans. Plasma Sci.
43
,
528
(
2015
).
70.
J.
Zhang
,
Z.-X.
Jin
,
J.-H.
Yang
,
H.-H.
Zhong
,
T.
Shu
,
J.-D.
Zhang
,
B.-L.
Qian
,
C.-W.
Yuan
,
Z.-Q.
Li
,
Y.-W.
Fan
,
S.-Y.
Zhou
, and
L.-R.
Xu
,
IEEE Trans. Plasma Sci.
39
,
1438
(
2011
).
71.
X. J.
Ge
,
H. H.
Zhong
,
B. L.
Qian
,
J.
Zhang
,
L.
Gao
,
Z. X.
Jin
,
Y. W.
Fan
, and
J. H.
Yang
,
Appl. Phys. Lett.
97
,
101503
(
2010
).
72.
S. P.
Bugaev
,
V. A.
Cherepenin
,
V. I.
Kanavets
,
A. I.
Klimov
,
V. I.
Koshelev
,
V. A.
Popov
, and
A. I.
Slepkov
,
IEEE Trans. Plasma Sci.
18
,
525
(
1990
).
73.
S. P.
Bugaev
,
V. A.
Cherepenin
,
V. I.
Kanavets
,
V. I.
Koshelev
,
V. A.
Popov
, and
A. N.
Vlasov
,
IEEE Trans. Plasma Sci.
18
,
518
(
1990
).
74.
V. V.
Rostov
,
E. M.
Totmeninov
,
R. V.
Tsygankov
,
I. K.
Kurkan
,
O. B.
Kovalchuk
,
A. A.
Elchaninov
,
A. S.
Stepchenko
,
A. V.
Gunin
,
V. Y.
Konev
,
A. Y.
Yushchenko
, and
E. V.
Emelyanov
,
IEEE Trans. Electron Devices
65
,
3019
(
2018
).
75.
L.
Song
,
J.
He
,
J.
Ling
, and
D.
Zhang
,
Phys. Plasmas
25
,
063107
(
2018
).
76.
M.
Thumm
,
State-of-the-Art of High Power Gyro-Devices and Free Electron Masers
(
KIT Scientific Publishing
,
Karlsruhe
,
2015
).
77.
W.
Lawson
,
J.
Cheng
,
J. P.
Calame
,
M.
Castle
,
B.
Hogan
,
V. L.
Granatstein
,
M.
Reiser
, and
G. P.
Saraph
,
Phys. Rev. Lett.
81
,
3030
(
1998
).
78.
M.
Petelin
,
Y.
Danilov
,
V.
Pavelyev
,
E.
Zasypkin
, and
N.
Zaitsev
, in
2010 IEEE International Vacuum Electronics Conference (IVEC)
(
IEEE
,
Monterey, CA, USA
,
2010
), pp.
191
192
.
79.
W.
Lawson
,
H.
Raghunathan
, and
M.
Esteban
,
IEEE Trans. Plasma Sci.
32
,
1236
(
2004
).
80.
V. L.
Granatstein
,
M.
Herndon
,
P.
Sprangle
,
Y.
Carmel
, and
J. A.
Nation
,
Plasma Phys.
17
,
23
(
1975
).
81.
A. W.
Cross
,
S. N.
Spark
, and
A. D. R.
Phelps
,
Int. J. Electron.
79
,
481
(
1995
).
82.
V. L.
Bratman
,
G. G.
Denisov
, and
S. V.
Samsonov
, “
Cyclotron autoresonance masers: Recent experiments and projects
,” in
1992 9th International Conference on High-Power Particle Beams
(
IEEE Press
,
Piscataway, NJ
,
1992
), pp.
1520
1525
.
83.
A. W.
Fliflet
,
T. A.
Hargreaves
,
R. P.
Fischer
,
W. M.
Manheimer
, and
P.
Sprangle
,
J. Fusion Energy
9
,
31
(
1990
).
84.
V. L.
Bratman
and
G. G.
Denisov
,
Int. J. Electron.
72
,
969
(
1992
).
85.
S.
Okano
,
Air and Missile Defense Radar (AMDR)
(
Defense Technical Information Center
,
Fort Belvoir, VA
,
2015
).
86.
K. W.
O'Haver
,
C. K.
Barker
,
G. D.
Dockery
, and
J. D.
Huffaker
,
Johns Hopkins APL Tech. Dig.
34
,
140
(
2018
).
87.
J. Y.
Tsao
,
S.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
,
S.
Rajan
,
C. G.
Van de Walle
,
E.
Bellotti
,
C. L.
Chua
,
R.
Collazo
,
M. E.
Coltrin
,
J. A.
Cooper
,
K. R.
Evans
,
S.
Graham
,
T. A.
Grotjohn
,
E. R.
Heller
,
M.
Higashiwaki
,
M. S.
Islam
,
P. W.
Juodawlkis
,
M. A.
Khan
,
A. D.
Koehler
,
J. H.
Leach
,
U. K.
Mishra
,
R. J.
Nemanich
,
R. C. N.
Pilawa-Podgurski
,
J. B.
Shealy
,
Z.
Sitar
,
M. J.
Tadjer
,
A. F.
Witulski
,
M.
Wraback
, and
J. A.
Simmons
,
Adv. Electron. Mater.
4
,
1600501
(
2018
).
88.
A.
Karabegovic
,
R. M.
O'Connell
, and
W. C.
Nunnally
,
IEEE Trans. Dielectr. Electr. Insul.
16
,
1011
(
2009
).
89.
M.
Fathipour
,
S. N.
Anousheh
,
K. G.
Davoudi
, and
V.
Fathipour
,
Int. J. Electr., Comput., Energ. Electron. Commun. Eng.
4
,
5
(
2010
).
90.
O. S. F.
Zucker
,
J. Lightwave Technol.
26
,
2430
(
2008
).
91.
Q.
Wu
,
Y.
Zhao
,
T.
Xun
,
H.
Yang
, and
W.
Huang
,
IEEE Electron Device Lett.
40
,
1167
(
2019
).
92.
O. S. F.
Zucker
,
P. K.-L.
Yu
, and
A.
Griffin
,
IEEE Trans. Plasma Sci.
42
,
1285
(
2014
).
93.
Z.
Duan
,
M. A.
Shapiro
,
E.
Schamiloglu
,
N.
Behdad
,
Y.
Gong
,
J. H.
Booske
,
B. N.
Basu
, and
R. J.
Temkin
,
IEEE Trans. Electron Devices
66
,
207
(
2019
).
94.
O.
Dai
,
J.
He
,
J.
Ling
,
L.
Wang
,
B.
Deng
, and
W.
Xu
,
Phys. Plasmas
26
,
023104
(
2019
).
95.
S.
Prasad
,
S.
Yurt
,
K.
Shipman
,
D.
Andreev
,
D.
Reass
,
M.
Fuks
, and
E.
Schamiloglu
, in
2017 Computing and Electromagnetics International Workshop (CEM)
(
IEEE
,
Barcelona, Spain
,
2017
), pp.
61
62
.
96.
Y.
Wang
,
Z.
Duan
,
F.
Wang
,
S.
Li
,
Y.
Nie
,
Y.
Gong
, and
J.
Feng
,
IEEE Trans. Electron Devices
63
,
3747
(
2016
).
97.
L.
Gao
,
B. L.
Qian
, and
X. J.
Ge
,
Phys. Plasmas
18
,
103111
(
2011
).
98.
J.
Yang
,
T.
Shu
, and
H.
Wang
,
Phys. Plasmas
19
,
072119
(
2012
).
99.
D.
Shiffler
,
M.
Haworth
,
K.
Cartwright
,
R.
Umstattd
,
M.
Ruebush
,
S.
Heidger
,
M.
LaCour
,
K.
Golby
,
D.
Sullivan
,
P.
Duselis
, and
J.
Luginsland
,
IEEE Trans. Plasma Sci.
36
,
718
(
2008
).
100.
D.
Shiffler
,
J.
Heggemeier
,
M.
LaCour
,
K.
Golby
, and
M.
Ruebush
,
Phys. Plasmas
11
,
1680
(
2004
).
101.
N. S.
Xu
and
S. E.
Huq
,
Mater. Sci. Eng. R: Rep.
48
,
47
(
2005
).
102.
G.
Shafir
,
M.
Kreif
,
J. Z.
Gleizer
,
S.
Gleizer
,
Y. E.
Krasik
,
A. V.
Gunin
,
O. P.
Kutenkov
,
I. V.
Pegel
, and
V. V.
Rostov
,
J. Appl. Phys.
118
,
193302
(
2015
).
103.
D.
Zhang
,
J.
Zhang
,
H. H.
Zhong
, and
Z. X.
Jin
,
Phys. Plasmas
20
,
073111
(
2013
).
104.
D.
Zhang
,
J.
Zhang
,
H.
Zhong
, and
Z.
Jin
,
Phys. Plasmas
19
,
103102
(
2012
).
105.
Y.
Cao
,
J.
Sun
,
Z.
Fan
,
Z.
Song
,
G.
Zhang
,
N.
Tan
,
P.
Wu
, and
M.
Zhu
,
IEEE Trans. Electron Device Lett.
40
,
1530
(
2019
).
106.
S. N.
Volkov
,
K. V.
Karlik
,
B. M.
Koval'chuk
,
G. E.
Ozur
,
I. K.
Kurkan
,
G.
Ozur
,
I.
Pegel'
,
S.
Polevin
,
D.
Proskurovskiĭ
, and
M.
Sukhov
,
Tech. Phys. Lett.
34
,
581
(
2008
).
107.
C.
Chang
,
M.
Zhu
,
J.
Verboncoeur
,
S.
Li
,
J. L.
Xie
,
K.
Yan
,
T. D.
Luo
, and
X. X.
Zhu
,
Appl. Phys. Lett.
104
,
253504
(
2014
).
108.
C.
Chang
,
G.
Liu
,
C.
Tang
,
C.
Chen
, and
J.
Fang
,
Phys. Plasmas
18
,
055702
(
2011
).
109.
C.
Chang
,
J.
Verboncoeur
,
M. N.
Guo
,
M.
Zhu
,
W.
Song
,
S.
Li
,
C. H.
Chen
,
X. C.
Bai
, and
J. L.
Xie
,
Phys. Rev. E
90
,
063107
(
2014
).
You do not currently have access to this content.