We report on experimental observations of the modifications in the propagation characteristics of precursor solitons due to the different shapes and sizes of the object over which the dust fluid flows. The experiments have been performed in a Π shaped Dusty Plasma Experimental device where dusty plasma is created in a DC glow discharge Ar plasma using kaolin particles. A floating copper wire installed radially on the cathode acts as a charged object in the plasma environment. The flow on the dust fluid is initiated by suddenly lowering the potential of the charged object from grounded potential to close to floating potential. The size (height and width) of the potential hill is then varied by drawing current from the wire through a variable resistance. With a decrease in the height of the potential hill, the amplitude, velocity, and number of excited precursor solitons are found to decrease, whereas the widths of the solitons are seen to increase. It is found that below a threshold value, these solitary waves are not excited, and the dust fluid simply flows over the hill. To examine the effect due to the shape of the potential profiles, the wire is replaced by a triangular object. Only trailing wakes are seen to be excited when the dust fluid faces the linearly increasing slope of the potential profile, whereas both solitons and wakes get excited when the object is placed with the sharp edge facing the flow. All the experimental findings qualitatively agree with numerical solutions obtained with different source terms in the forced-Korteweg–de Vries model equation.

1.
D.-B.
Huang
,
O.
Sibul
,
W.
Webster
,
J.
Wehausen
,
D.-M.
Wu
, and
T.
Wu
, “
Ships moving in the transcritical range
,” in
Proceeding Conference on Behaviour of Ships in Restricted Waters
, Varna, Bulgaria (
1982
), pp.
26
21
.
2.
R.
Ertekin
, “
Ship-generated solitons
,” in
Proceedings of the 15th Symposium on Naval Hydrodynamics
, Hamburg, Germany, (
1985
).
3.
R.
Ertekin
,
W.
Webster
, and
J.
Wehausen
, “
Waves caused by a moving disturbance in a shallow channel of finite width
,”
J. Fluid Mech.
169
,
275
292
(
1986
).
4.
T. Y.-T.
Wu
, “
Generation of upstream advancing solitons by moving disturbances
,”
J. Fluid Mech.
184
,
75
99
(
1987
).
5.
H.-L. A.
Huang
,
Dynamics of Surface Waves in Coastal Waters
(
Springer
,
2010
).
6.
M. G.
Sun
, “
The evolution of waves created by a ship in shallow canal
,” in
the 60th Anniversary Volume
,
Zhongshan University, Mechanics Essays Guangzhow
,
China
,
1985
, pp.
17
25
(in Chinese).
7.
N.
Rao
,
P.
Shukla
, and
M.
Yu
, “
Dust-acoustic waves in dusty plasmas
,”
Planet. Space Sci.
38
,
543
546
(
1990
).
8.
A.
Barkan
,
R. L.
Merlino
, and
N.
D'Angelo
, “
Laboratory observation of the dust-acoustic wave mode
,”
Phys. Plasmas
2
,
3563
3565
(
1995
).
9.
P. K.
Shukla
and
V. P.
Silin
, “
Dust ion-acoustic wave
,”
Phys. Scr.
45
,
508
(
1992
).
10.
F.
Melandso
, “
Lattice waves in dust plasma crystals
,”
Phys. Plasmas
3
,
3890
3901
(
1996
).
11.
N.
Rao
and
P.
Shukla
, “
Nonlinear dust-acoustic waves with dust charge fluctuations
,”
Planet. Space Sci.
42
,
221
225
(
1994
).
12.
P.
Bandyopadhyay
,
G.
Prasad
,
A.
Sen
, and
P. K.
Kaw
, “
Experimental study of nonlinear dust acoustic solitary waves in a dusty plasma
,”
Phys. Rev. Lett.
101
,
065006
(
2008
).
13.
P. K.
Shukla
and
A. A.
Mamun
, “
Dust-acoustic shocks in a strongly coupled dusty plasma
,”
IEEE Trans. Plasma Sci.
29
,
221
225
(
2001
).
14.
J.
Heinrich
,
S.-H.
Kim
, and
R. L.
Merlino
, “
Laboratory observations of self-excited dust acoustic shocks
,”
Phys. Rev. Lett.
103
,
115002
(
2009
).
15.
E.
Thomas
,
K.
Avinash
, and
R. L.
Merlino
, “
Probe induced voids in a dusty plasma
,”
Phys. Plasmas
11
,
1770
1774
(
2004
).
16.
J.
Goree
,
G. E.
Morfill
,
V. N.
Tsytovich
, and
S. V.
Vladimirov
, “
Theory of dust voids in plasmas
,”
Phys. Rev. E
59
,
7055
7067
(
1999
).
17.
A. M.
Lipaev
,
S. A.
Khrapak
,
V. I.
Molotkov
,
G. E.
Morfill
,
V. E.
Fortov
,
A. V.
Ivlev
,
H. M.
Thomas
,
A. G.
Khrapak
,
V. N.
Naumkin
,
A. I.
Ivanov
,
S. E.
Tretschev
, and
G. I.
Padalka
, “
Void closure in complex plasmas under microgravity conditions
,”
Phys. Rev. Lett.
98
,
265006
(
2007
).
18.
M.
Kaur
,
S.
Bose
,
P. K.
Chattopadhyay
,
D.
Sharma
,
J.
Ghosh
, and
Y. C.
Saxena
, “
Observation of dust torus with poloidal rotation in direct current glow discharge plasma
,”
Phys. Plasmas
22
,
033703
(
2015
).
19.
G. E.
Morfill
,
H. M.
Thomas
,
U.
Konopka
,
H.
Rothermel
,
M.
Zuzic
,
A.
Ivlev
, and
J.
Goree
, “
Condensed plasmas under microgravity
,”
Phys. Rev. Lett.
83
,
1598
1601
(
1999
).
20.
M.
Choudhary
,
S.
Mukherjee
, and
P.
Bandyopadhyay
, “
Experimental observation of self excited co-rotating multiple vortices in a dusty plasma with inhomogeneous plasma background
,”
Phys. Plasmas
24
,
033703
(
2017
).
21.
A.
Usachev
,
A.
Zobnin
,
O.
Petrov
,
V.
Fortov
,
M.
Thoma
,
M.
Kretschmer
,
S.
Ratynskaia
,
R.
Quinn
,
H.
Hoefner
, and
G.
Morfill
, “
The project “plasmakristall-4”(pk-4)-a dusty plasma experiment in a combined dc/rf (i) discharge plasma under microgravity conditions
,”
Czech. J. Phys.
54
,
C639
(
2004
).
22.
D. H. E.
Dubin
, “
The phonon wake behind a charge moving relative to a two-dimensional plasma crystal
,”
Phys. Plasmas
7
,
3895
3903
(
2000
).
23.
L.-J.
Hou
,
Z. L.
Mišković
,
K.
Jiang
, and
Y.-N.
Wang
, “
Energy loss of a charged particle moving over a 2d strongly coupled dusty plasma
,”
Phys. Rev. Lett.
96
,
255005
(
2006
).
24.
D.
Samsonov
,
J.
Goree
,
Z. W.
Ma
,
A.
Bhattacharjee
,
H. M.
Thomas
, and
G. E.
Morfill
, “
Mach cones in a coulomb lattice and a dusty plasma
,”
Phys. Rev. Lett.
83
,
3649
3652
(
1999
).
25.
D.
Samsonov
,
J.
Goree
,
H. M.
Thomas
, and
G. E.
Morfill
, “
Mach cone shocks in a two-dimensional yukawa solid using a complex plasma
,”
Phys. Rev. E
61
,
5557
5572
(
2000
).
26.
O.
Havnes
,
F.
Li
,
F.
Melandso
,
T.
Aslaksen
,
T. W.
Hartquist
,
G. E.
Morfill
,
T.
Nitter
, and
V.
Tsytovich
, “
Diagnostic of dusty plasma conditions by the observation of mach cones caused by dust acoustic waves
,”
J. Vac. Sci. Technol., A
14
,
525
528
(
1996
).
27.
A. A.
Mamun
,
P. K.
Shukla
, and
G. E.
Morfill
, “
Theory of mach cones in magnetized dusty plasmas with strongly correlated charged dust grains
,”
Phys. Rev. Lett.
92
,
095005
(
2004
).
28.
L.-J.
Hou
,
Y.-N.
Wang
, and
Z. L.
Mišković
, “
Theoretical study of laser-excited mach cones in dusty plasmas
,”
Phys. Rev. E
70
,
056406
(
2004
).
29.
S.
Jaiswal
,
P.
Bandyopadhyay
, and
A.
Sen
, “
Experimental observation of precursor solitons in a flowing complex plasma
,”
Phys. Rev. E
93
,
041201
(
2016
).
30.
S.
Kumar Tiwari
and
A.
Sen
, “
Wakes and precursor soliton excitations by a moving charged object in a plasma
,”
Phys. Plasmas
23
,
022301
(
2016
).
31.
S. K.
Tiwari
and
A.
Sen
, “
Fore-wake excitations from moving charged objects in a complex plasma
,”
Phys. Plasmas
23
,
100705
(
2016
).
32.
S.
Jaiswal
,
P.
Bandyopadhyay
, and
A.
Sen
, “
Dusty plasma experimental (dpex) device for complex plasma experiments with flow
,”
Rev. Sci. Instrum.
86
,
113503
(
2015
).
33.
S. A.
Khrapak
,
S. V.
Ratynskaia
,
A. V.
Zobnin
,
A. D.
Usachev
,
V. V.
Yaroshenko
,
M. H.
Thoma
,
M.
Kretschmer
,
H.
Höfner
,
G. E.
Morfill
,
O. F.
Petrov
, and
V. E.
Fortov
, “
Particle charge in the bulk of gas discharges
,”
Phys. Rev. E
72
,
016406
(
2005
).
34.
S. A.
Khrapak
and
G. E.
Morfill
, “
Grain surface temperature in noble gas discharges: Refined analytical model
,”
Phys. Plasmas
13
,
104506
(
2006
).
35.
U.
Konopka
, “
Wechselwirkungen geladener staubteilchen in hochfrequenzplasmen
,” Ph.D. thesis (
Ruhr-Universität-Bochum
,
2000
).
36.
Y.
Feng
,
J.
Goree
, and
B.
Liu
, “
Accurate particle position measurement from images
,”
Rev. Sci. Instrum.
78
,
053704
(
2007
).
37.
S.
Jaiswal
,
P.
Bandyopadhyay
, and
A.
Sen
, “
Flowing dusty plasma experiments: generation of flow and measurement techniques
,”
Plasma Sources Sci. Technol.
25
(
6
),
065021
(
2016
).
38.
G.
Arora
,
P.
Bandyopadhyay
,
M. G.
Hariprasad
, and
A.
Sen
, “
Micro-dynamics of neutral flow induced dusty plasma flow
,”
Phys. Plasmas
26
,
023701
(
2019
).
39.
W.
Thielicke
and
E.
Stamhuis
, “
Pivlab-time-resolved digital particle image velocimetry tool for matlab (version: 1.35)
,”
J. Open Res. Software
2
,
e30
(
2014
).
40.
A.
Sen
,
S.
Tiwari
,
S.
Mishra
, and
P.
Kaw
, “
Nonlinear wave excitations by orbiting charged space debris objects
,”
Adv. Space Res.
56
,
429
435
(
2015
).
41.
G.
Arora
,
P.
Bandyopadhyay
,
M. G.
Hariprasad
, and
A.
Sen
, “
A dust particle based technique to measure potential profiles in a plasma
,”
Phys. Plasmas
25
,
083711
(
2018
).
You do not currently have access to this content.