Aluminum oxide (Al2O3) plasma was generated using the Ti:Sapphire/Nd:glass laser and Z-pinch pulse-power generator at the University of Nevada, Reno, Nevada Terawatt Facility. To determine the electron temperature, we use the Boltzmann plot method for the transitions (Al III 4d 2D3/2 → 4p 2P1/2) at 451.2564 nm, (Al III 4d 2D5/2 → 4p 2P3/2) at 452.9194 nm, (Al III 4p 2P3/2 → 4s 2S1/2) at 569.6603, and (Al III 4p 2P1/2 → 4s 2S1/2) at 572.2728 nm. Simultaneously, Mach–Zehnder laser interferometry was used to measure the electron number density. We compared simulated spectra obtained from PrismSPECT with electron number density and temperature measurements, and the electron temperature was found to range from 1.8 to 2.8 eV, while the electron number density was found to range from 2.3 × 1017 to 6.9 × 1017 cm−3 early in the pinched plasma formation.

1.
E. C.
Dutra
,
J. A.
Koch
,
R.
Presura
,
W. A.
Angermeier
,
T.
Darling
,
S.
Haque
,
R. C.
Mancini
, and
A. M.
Covington
, “
Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in ICF-relevant plasmas
,”
Rev. Sci. Instrum.
87
(
11
),
11E558
(
2016
).
2.
M. A.
Naeem
,
M.
Iqbal
,
N.
Amin
,
M.
Musadiq
, and
Y.
Jamil
, “
Measurement of electron density and temperature of laser-induced copper plasma
,”
Asian J. Chem.
25
,
2192
2198
(
2013
).
3.
H. R.
Griem
,
Principles of Plasma Spectroscopy
(
Cambridge University Press
,
1997
).
4.
T.
Hussain
,
M. A.
Gondal
, and
M.
Shamraiz
, “
Determination of plasma temperature and electron density of iron in iron slag samples using laser breakdown spectroscopy
,”
IOP Conf. Ser.: Mater. Sci. Eng.
146
,
012017
(
2016
).
5.
S. S.
Harilal
,
C. V.
Bindhu
,
C.
Vallabhan
, and
V.
Nampoori
, “
Time evolution of the electron density and temperature in laser-produced plasma from YBa2Cu3O7
,”
Appl. Phys. B: Laser Opt.
66
,
633
638
(
1998
).
6.
N. M.
Shaikh
,
B.
Rashid
,
S.
Hafeez
,
Y.
Jamil
, and
M. A.
Baig
, “
Measurement of electron density and temperature of laser-induced zinc plasma
,”
J. Phys. D: Appl. Phys.
39
,
1384
1391
(
2006
).
7.
N.
Musadiq
,
N.
Amin
,
Y.
Jamil
,
M.
Iqbal
,
M. A.
Naeem
, and
H. A.
Shahzad
, “
Measurement of electron number density and electron temperature of laser-induced Silver plasma
,”
Int. J. Eng. Technol.
2
,
32
43
(
2013
).
8.
N.
Ohno
,
M. A.
Razzak
,
H.
Ukai
,
S.
Takamura
, and
Y.
Uesugi
, “
Validity of electron temperature measurement by using Boltzmann plot method in radio frequency inductive discharge in the atmospheric pressure range
,”
Plasma Fusion Res.
1
,
028-1
028-9
(
2006
).
9.
H. R.
Griem
, “
Validity of local thermal equilibrium in plasma spectroscopy
,”
Phys. Rev.
131
,
1170
(
1963
).
10.
See https://www.nist.gov/pml/atomic-spectra-database for
NIST
, Atomic Spectra Database (
2018
).
11.
See http://www.prism-cs.com/ for Prism Computational Sciences.
12.
H.
Hutchinson
,
Principles of Plasma Diagnostics
(
Cambridge University Press
,
2002
).
13.
M.
Hipp
,
P.
Reiterer
,
J.
Woisetschläger
,
H.
Philipp
,
G.
Pretzler
,
W.
Fliesser
, and
T.
Neger
, “
Application of interferometric fringe evaluation software at Technical University Graz
,”
Proc. SPIE
3745
,
357789
(
1999
).
14.
M.
Hipp
and
P.
Reiterer
, User Manual for IDEA 1.7 (Institut für Experimental Physik Technische Universität Graz,
2003
).
15.
A.
Anderson
, “
Investigation of the ablation and implosion phases in 1 mA wire array Z-pinches with UV and x-ray diagnostics
,” Ph.D. dissertation (
University of Nevada
,
Reno
,
2015
).
16.
R.
Noll
,
Laser-Induced Breakdown Spectroscopy, Fundamentals and Applications
(
Springer
,
2012
).
17.
F.
Caridi
,
L.
Torrisi
,
A. M.
Mezzasalma
,
G.
Mondio
, and
A.
Borrielli
, “
Al2O3 plasma production during pulsed laser deposition
,”
Eur. Phys. J. D
54
,
467
472
(
2009
).
18.
K.
Alnama
,
A.
Alkhawwam
, and
A. K.
Jazmati
, “
Investigation of local thermodynamic equilibrium of laser induced Al2O3–TiC plasma in argon by spatially resolved optical emission spectroscopy
,”
AIP Adv.
6
,
065112
(
2016
).
19.
M.
Salik
,
M.
Hanif
, and
M. A.
Baig
, “
Plasma diagnostic study of alumina (Al2O3) generated by the fundamental and second harmonics of a Nd:YAG Laser
,”
IEEE Trans. Plasma Sci.
39
,
1861
1867
(
2011
).
20.
M. A.
Baiga
,
A.
Qamar
,
M. A.
Fareed
,
M.
Anwar-ul-Haqc
, and
R.
Ali
, “
Spatial diagnostics of the laser induced lithium fluoride plasma
,”
Phys. Plasmas
19
,
063304
(
2012
).
21.
V.
Morel
and
A.
Bultel
, “
Theoretical study of the formation mechanism of laser-induced aluminum plasmas using Nd:YAG fundamental, second or third harmonics
,”
Spectrochim. Acta B
94–95
,
63
70
(
2014
).
You do not currently have access to this content.