Nonradial hydrodynamic flow can be generated or amplified during plasma compression by various mechanisms, including the compression itself. In certain circumstances, the plasma may reach a viscous state; for example, in compression experiments seeking fusion, the fuel plasma may reach a viscous state late in the compression due in part to the rising fuel temperature. Here, we consider viscous dissipation of nonradial flow in the case of initially isotropic, three-dimensional (3D), turbulent flow fields compressed at constant velocity in two dimensions. Prior work in the case of 3D compressions has shown the possibility of effective viscous dissipation of nonradial flow under compression. We show that, theoretically, complete viscous dissipation of the nonradial flow should still occur in the 2D case when the plasma heating is adiabatic and the viscosity has the (strong) Braginskii temperature dependence (μT5/2). However, in the general case, the amount of compression required is very large even for modest initial Reynolds numbers, with the compression reaching an intermediate state dominated by variations only in the noncompressed direction. We show that both the nonlinearity and boundary conditions can play important roles in setting the characteristics and ease of the viscous dissipation.

1.
E. I.
Moses
,
R. N.
Boyd
,
B. A.
Remington
,
C. J.
Keane
, and
R.
Al-Ayat
,
Phys. Plasmas
16
,
041006
(
2009
).
2.
M. J.
Edwards
,
P. K.
Patel
,
J. D.
Lindl
,
L. J.
Atherton
,
S. H.
Glenzer
,
S. W.
Haan
,
J. D.
Kilkenny
,
O. L.
Landen
,
E. I.
Moses
,
A.
Nikroo
,
R.
Petrasso
,
T. C.
Sangster
,
P. T.
Springer
,
S.
Batha
,
R.
Benedetti
,
L.
Bernstein
,
R.
Betti
,
D. L.
Bleuel
,
T. R.
Boehly
,
D. K.
Bradley
,
J. A.
Caggiano
,
D. A.
Callahan
,
P. M.
Celliers
,
C. J.
Cerjan
,
K. C.
Chen
,
D. S.
Clark
,
G. W.
Collins
,
E. L.
Dewald
,
L.
Divol
,
S.
Dixit
,
T.
Doeppner
,
D. H.
Edgell
,
J. E.
Fair
,
M.
Farrell
,
R. J.
Fortner
,
J.
Frenje
,
M. G.
Gatu Johnson
,
E.
Giraldez
,
V. Y.
Glebov
,
G.
Grim
,
B. A.
Hammel
,
A. V.
Hamza
,
D. R.
Harding
,
S. P.
Hatchett
,
N.
Hein
,
H. W.
Herrmann
,
D.
Hicks
,
D. E.
Hinkel
,
M.
Hoppe
,
W. W.
Hsing
,
N.
Izumi
,
B.
Jacoby
,
O. S.
Jones
,
D.
Kalantar
,
R.
Kauffman
,
J. L.
Kline
,
J. P.
Knauer
,
J. A.
Koch
,
B. J.
Kozioziemski
,
G.
Kyrala
,
K. N.
LaFortune
,
S. L.
Pape
,
R. J.
Leeper
,
R.
Lerche
,
T.
Ma
,
B. J.
MacGowan
,
A. J.
MacKinnon
,
A.
Macphee
,
E. R.
Mapoles
,
M. M.
Marinak
,
M.
Mauldin
,
P. W.
McKenty
,
M.
Meezan
,
P. A.
Michel
,
J.
Milovich
,
J. D.
Moody
,
M.
Moran
,
D. H.
Munro
,
C. L.
Olson
,
K.
Opachich
,
A. E.
Pak
,
T.
Parham
,
H.-S.
Park
,
J. E.
Ralph
,
S. P.
Regan
,
B.
Remington
,
H.
Rinderknecht
,
H. F.
Robey
,
M.
Rosen
,
S.
Ross
,
J. D.
Salmonson
,
J.
Sater
,
D. H.
Schneider
,
F. H.
Sguin
,
S. M.
Sepke
,
D. A.
Shaughnessy
,
V. A.
Smalyuk
,
B. K.
Spears
,
C.
Stoeckl
,
W.
Stoeffl
,
L.
Suter
,
C. A.
Thomas
,
R.
Tommasini
,
R. P.
Town
,
S. V.
Weber
,
P. J.
Wegner
,
K.
Widman
,
M.
Wilke
,
D. C.
Wilson
,
C. B.
Yeamans
, and
A.
Zylstra
,
Phys. Plasmas
20
,
070501
(
2013
).
3.
S. A.
Slutz
,
M. C.
Herrmann
,
R. A.
Vesey
,
A. B.
Sefkow
,
D. B.
Sinars
,
D. C.
Rovang
,
K. J.
Peterson
, and
M. E.
Cuneo
,
Phys. Plasmas
17
,
056303
(
2010
).
4.
S. A.
Slutz
and
R. A.
Vesey
,
Phys. Rev. Lett.
108
,
025003
(
2012
).
5.
C. R.
Weber
,
D. S.
Clark
,
A. W.
Cook
,
L. E.
Busby
, and
H. F.
Robey
,
Phys. Rev. E
89
,
053106
(
2014
).
6.
D. S.
Clark
,
M. M.
Marinak
,
C. R.
Weber
,
D. C.
Eder
,
S. W.
Haan
,
B. A.
Hammel
,
D. E.
Hinkel
,
O. S.
Jones
,
J. L.
Milovich
,
P. K.
Patel
,
H. F.
Robey
,
J. D.
Salmonson
,
S. M.
Sepke
, and
C. A.
Thomas
,
Phys. Plasmas
22
,
022703
(
2015
).
7.
S.
Davidovits
and
N. J.
Fisch
,
Phys. Rev. Lett.
116
,
105004
(
2016
).
8.
S.
Davidovits
and
N. J.
Fisch
,
Phys. Rev. E
94
,
053206
(
2016
).
9.
S.
Davidovits
and
N. J.
Fisch
,
Phys. Plasmas
24
,
122311
(
2017
).
10.
G.
Viciconte
,
B.-J.
Gréa
, and
F. S.
Godeferd
,
Phys. Rev. E
97
,
023201
(
2018
).
11.
S.
Davidovits
and
N. J.
Fisch
,
Phys. Plasmas
25
,
042703
(
2018
).
12.
A.
Campos
and
B. E.
Morgan
,
Phys. Rev. E
99
,
013107
(
2019
).
13.
A.
Campos
and
B. E.
Morgan
,
Phys. Rev. E
99
(
6
),
063103
(
2019
).
14.
S.
Davidovits
and
N. J.
Fisch
,
Phys. Plasmas
26
(
6
),
062709
(
2019
).
15.
B. A.
Hammel
,
H. A.
Scott
,
S. P.
Regan
,
C.
Cerjan
,
D. S.
Clark
,
M. J.
Edwards
,
R.
Epstein
,
S. H.
Glenzer
,
S. W.
Haan
,
N.
Izumi
,
J. A.
Koch
,
G. A.
Kyrala
,
O. L.
Landen
,
S. H.
Langer
,
K.
Peterson
,
V. A.
Smalyuk
,
L. J.
Suter
, and
D. C.
Wilson
,
Phys. Plasmas
18
,
056310
(
2011
).
16.
S. P.
Regan
,
R.
Epstein
,
B. A.
Hammel
,
L. J.
Suter
,
J.
Ralph
,
H.
Scott
,
M. A.
Barrios
,
D. K.
Bradley
,
D. A.
Callahan
,
C.
Cerjan
,
G. W.
Collins
,
S. N.
Dixit
,
T.
Doeppner
,
M. J.
Edwards
,
D. R.
Farley
,
S.
Glenn
,
S. H.
Glenzer
,
I. E.
Golovkin
,
S. W.
Haan
,
A.
Hamza
,
D. G.
Hicks
,
N.
Izumi
,
J. D.
Kilkenny
,
J. L.
Kline
,
G. A.
Kyrala
,
O. L.
Landen
,
T.
Ma
,
J. J.
MacFarlane
,
R. C.
Mancini
,
R. L.
McCrory
,
N. B.
Meezan
,
D. D.
Meyerhofer
,
A.
Nikroo
,
K. J.
Peterson
,
T. C.
Sangster
,
P.
Springer
, and
R. P. J.
Town
,
Phys. Plasmas
19
,
056307
(
2012
).
17.
T.
Ma
,
P. K.
Patel
,
N.
Izumi
,
P. T.
Springer
,
M. H.
Key
,
L. J.
Atherton
,
L. R.
Benedetti
,
D. K.
Bradley
,
D. A.
Callahan
,
P. M.
Celliers
,
C. J.
Cerjan
,
D. S.
Clark
,
E. L.
Dewald
,
S. N.
Dixit
,
T.
Döppner
,
D. H.
Edgell
,
R.
Epstein
,
S.
Glenn
,
G.
Grim
,
S. W.
Haan
,
B. A.
Hammel
,
D.
Hicks
,
W. W.
Hsing
,
O. S.
Jones
,
S. F.
Khan
,
J. D.
Kilkenny
,
J. L.
Kline
,
G. A.
Kyrala
,
O. L.
Landen
,
S.
Le Pape
,
B. J.
MacGowan
,
A. J.
Mackinnon
,
A. G.
MacPhee
,
N. B.
Meezan
,
J. D.
Moody
,
A.
Pak
,
T.
Parham
,
H.-S.
Park
,
J. E.
Ralph
,
S. P.
Regan
,
B. A.
Remington
,
H. F.
Robey
,
J. S.
Ross
,
B. K.
Spears
,
V.
Smalyuk
,
L. J.
Suter
,
R.
Tommasini
,
R. P.
Town
,
S. V.
Weber
,
J. D.
Lindl
,
M. J.
Edwards
,
S. H.
Glenzer
, and
E. I.
Moses
,
Phys. Rev. Lett.
111
,
085004
(
2013
).
18.
B. M.
Haines
,
G. P.
Grim
,
J. R.
Fincke
,
R. C.
Shah
,
C. J.
Forrest
,
K.
Silverstein
,
F. J.
Marshall
,
M.
Boswell
,
M. M.
Fowler
,
R. A.
Gore
,
A. C.
Hayes-Sterbenz
,
G.
Jungman
,
A.
Klein
,
R. S.
Rundberg
,
M. J.
Steinkamp
, and
J. B.
Wilhelmy
,
Phys. Plasmas
23
,
072709
(
2016
).
19.
S. I.
Braginskii
,
Rev. Plasma Phys.
1
,
205
(
1965
), see https://ui.adsabs.harvard.edu/abs/1965RvPP....1..205B.
20.
J. C. R.
Hunt
and
D. J.
Carruthers
,
J. Fluid Mech.
212
,
497
(
1990
).
21.
See http://dedalus-project.org for code source, documentation, and developer information.
22.
K. J.
Burns
,
G. M.
Vasil
,
J. S.
Oishi
,
D.
Lecoanet
, and
B.
Brown
, “
Dedalus: Flexible framework for spectrally solving differential equations
,”
Astrophys. Source Code Library
, arXiv:1905.10388 (2019).
23.
T. S.
Lundgren
,
Annual Research Briefs
(
Center for Turbulence Research
,
Stanford
,
2003
), pp.
461
473
.
24.
C.
Rosales
and
C.
Meneveau
,
Phys. Fluids
17
,
095106
(
2005
).
25.
E.
Kroupp
,
D.
Osin
,
A.
Starobinets
,
V.
Fisher
,
V.
Bernshtam
,
L.
Weingarten
,
Y.
Maron
,
I.
Uschmann
,
E.
Förster
,
A.
Fisher
,
M. E.
Cuneo
,
C.
Deeney
, and
J. L.
Giuliani
,
Phys. Rev. Lett.
107
,
105001
(
2011
).
26.
E.
Kroupp
,
E.
Stambulchik
,
A.
Starobinets
,
D.
Osin
,
V. I.
Fisher
,
D.
Alumot
,
Y.
Maron
,
S.
Davidovits
,
N. J.
Fisch
, and
A.
Fruchtman
,
Phys. Rev. E
97
,
013202
(
2018
).
27.
Y.
Maron
,
A.
Starobinets
,
V. I.
Fisher
,
E.
Kroupp
,
D.
Osin
,
A.
Fisher
,
C.
Deeney
,
C. A.
Coverdale
,
P. D.
Lepell
,
E. P.
Yu
,
C.
Jennings
,
M. E.
Cuneo
,
M. C.
Herrmann
,
J. L.
Porter
,
T. A.
Mehlhorn
, and
J. P.
Apruzese
,
Phys. Rev. Lett.
111
,
035001
(
2013
).
28.
G.
Rosenzweig
,
E.
Kroupp
,
A.
Starobinets
,
A.
Fisher
, and
Y.
Maron
, in
2014 IEEE 41st International Conference on Plasma Sciences (ICOPS)
(
2014
), pp.
1
1
.
You do not currently have access to this content.