Using 2.5 dimensional kinetic particle-in-cell simulations, we simulate reconnection conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta (ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic shear (strong guide field). Changing the simulation domain size, we find that the ion response varies greatly. For reconnecting regions with scales comparable to the ion inertial length, the ions do not respond to the reconnection dynamics leading to “electron-only” reconnection with very large quasisteady reconnection rates. Note that in these simulations, the ion Larmor radius is comparable to the ion inertial length. The transition to a more traditional “ion-coupled” reconnection is gradual as the reconnection domain size increases, with the ions becoming frozen-in in the exhaust when the magnetic island width in the normal direction reaches many ion inertial lengths. During this transition, the quasisteady reconnection rate decreases until the ions are fully coupled, ultimately reaching an asymptotic value. The scaling of the ion outflow velocity with the exhaust width during this electron-only to ion-coupled transition is found to be consistent with a theoretical model of a newly reconnected field line. In order to have a fully frozen-in ion exhaust with ion flows comparable to the reconnection Alfvén speed, an exhaust width of at least several ion inertial lengths is needed. In turbulent systems with reconnection occurring between magnetic bubbles associated with fluctuations, using geometric arguments, we estimate that fully ion-coupled reconnection requires magnetic bubble length scales of at least several tens of ion inertial lengths.

1.
M.
Yamada
,
R.
Kulsrud
, and
H.
Ji
, “
Magnetic reconnection
,”
Rev. Mod. Phys.
82
,
603
(
2010
).
2.
A.
Retinò
,
D.
Sundkvist
,
A.
Vaivads
,
F.
Mozer
,
M.
André
, and
C. J.
Owen
, “
In situ evidence of magnetic reconnection in turbulent plasma
,”
Nat. Phys.
3
,
236
238
(
2007
).
3.
E.
Yordanova
,
Z.
Vörös
,
A.
Varsani
,
D. B.
Graham
,
C.
Norgren
,
Y. V.
Khotyaintsev
,
A.
Vaivads
,
E.
Eriksson
,
R.
Nakamura
,
P.-A.
Lindqvist
,
G.
Marklund
,
R. E.
Ergun
,
W.
Magnes
,
W.
Baumjohann
,
D.
Fischer
,
F.
Plaschke
,
Y.
Narita
,
C. T.
Russell
,
R. J.
Strangeway
,
O.
Le Contel
,
C.
Pollock
,
R. B.
Torbert
,
B. J.
Giles
,
J. L.
Burch
,
L. A.
Avanov
,
J. C.
Dorelli
,
D. J.
Gershman
,
W. R.
Paterson
,
B.
Lavraud
, and
Y.
Saito
, “
Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath
,”
Geophys. Res. Lett.
43
,
5969
5978
, (
2016
).
4.
E.
Eriksson
,
A.
Vaivads
,
D. B.
Graham
,
Y. V.
Khotyaintsev
,
E.
Yordanova
,
H.
Hietala
,
M.
André
,
L. A.
Avanov
,
J. C.
Dorelli
,
D. J.
Gershman
,
B. L.
Giles
,
B.
Lavraud
,
W. R.
Paterson
,
C. J.
Pollock
,
Y.
Saito
,
W.
Magnes
,
C.
Russell
,
R.
Torbert
,
R.
Ergun
,
P.-A.
Lindqvist
, and
J.
Burch
, “
Strong current sheet at a magnetosheath jet: Kinetic structure and electron acceleration
,”
J. Geophys. Res.
121
,
9608
9618
, (
2016
).
5.
Z.
Vörös
,
E.
Yordanova
,
A.
Varsani
,
K. J.
Genestreti
,
Y. V.
Khotyaintsev
,
W.
Li
,
D. B.
Graham
,
C.
Norgren
,
R.
Nakamura
,
Y.
Narita
,
F.
Plaschke
,
W.
Magnes
,
W.
Baumjohann
,
D.
Fischer
,
A.
Vaivads
,
E.
Eriksson
,
P.-A.
Lindqvist
,
G.
Marklund
,
R. E.
Ergun
,
M.
Leitner
,
M. P.
Leubner
,
R. J.
Strangeway
,
O.
Le Contel
,
C.
Pollock
,
B. J.
Giles
,
R. B.
Torbert
,
J. L.
Burch
,
L. A.
Avanov
,
J. C.
Dorelli
,
D. J.
Gershman
,
W. R.
Paterson
,
B.
Lavraud
, and
Y.
Saito
, “
MMS observation of magnetic reconnection in the turbulent magnetosheath
,”
J. Geophys. Res.
122
,
11442
11467
, (
2017
).
6.
T. D.
Phan
,
J. P.
Eastwood
,
M. A.
Shay
,
J. F.
Drake
,
B. U. Ö.
Sonnerup
,
M.
Fujimoto
,
P. A.
Cassak
,
M.
Øieroset
,
J. L.
Burch
,
R. B.
Torbert
,
A. C.
Rager
,
J. C.
Dorelli
,
D. J.
Gershman
,
C.
Pollock
,
P. S.
Pyakurel
,
C. C.
Haggerty
,
Y.
Khotyaintsev
,
B.
Lavraud
,
Y.
Saito
,
M.
Oka
,
R. E.
Ergun
,
A.
Retino
,
O.
Le Contel
,
M. R.
Argall
,
B. L.
Giles
,
T. E.
Moore
,
F. D.
Wilder
,
R. J.
Strangeway
,
C. T.
Russell
,
P. A.
Lindqvist
, and
W.
Magnes
, “
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath
,”
Nature
557
,
202
206
(
2018
).
7.
S.
Servidio
,
W. H.
Matthaeus
,
M. A.
Shay
,
P.
Dmitruk
,
P. A.
Cassak
, and
M.
Wan
, “
Statistics of magnetic reconnection in two-dimensional magnetohydrodynamic turbulence
,”
Phys. Plasmas
17
,
032315
(
2010
).
8.
S.
Donato
,
S.
Servidio
,
P.
Dmitruk
,
V.
Carbone
,
M. A.
Shay
,
P. A.
Cassak
, and
W. H.
Matthaeus
, “
Reconnection events in two-dimensional hall magnetohydrodynamic turbulence
,”
Phys. Plasmas
19
,
092307
(
2012
).
9.
P. A.
Cassak
and
M. A.
Shay
, “
Scaling of asymmetric magnetic reconnection: General theory and collisional simulations
,”
Phys. Plasmas
14
,
102114
(
2007
).
10.
C. C.
Haggerty
,
T. N.
Parashar
,
W. H.
Matthaeus
,
M. A.
Shay
,
Y.
Yang
,
M.
Wan
,
P.
Wu
, and
S.
Servidio
, “
Exploring the statistics of magnetic reconnection X-points in kinetic particle-in-cell turbulence
,”
Phys. Plasmas
24
,
102308
(
2017
).
11.
S. S.
Cerri
and
F.
Califano
, “
Reconnection and small-scale fields in 2D-3V hybrid-kinetic driven turbulence simulations
,”
New J. Phys.
19
,
025007
(
2017
).
12.
C.
Dong
,
L.
Wang
,
Y.-M.
Huang
,
L.
Comisso
, and
A.
Bhattacharjee
, “
Role of the plasmoid instability in magnetohydrodynamic turbulence
,”
Phys. Rev. Lett.
121
,
165101
(
2018
).
13.
A.
Mallet
,
A. A.
Schekochihin
, and
B. D. G.
Chandran
, “
Disruption of sheet-like structures in Alfvénic turbulence by magnetic reconnection
,”
Mon. Not. R. Astron. Soc.
468
,
4862
4871
(
2017
).
14.
S.
Boldyrev
and
N. F.
Loureiro
, “
Magnetohydrodynamic turbulence mediated by reconnection
,”
Astrophys. J.
844
,
125
(
2017
).
15.
L.
Franci
,
S. S.
Cerri
,
F.
Califano
,
S.
Landi
,
E.
Papini
,
A.
Verdini
,
L.
Matteini
,
F.
Jenko
, and
P.
Hellinger
, “
Magnetic reconnection as a driver for a sub-ion-scale cascade in plasma turbulence
,”
Astrophys. J. Lett.
850
,
L16
(
2017
).
16.
E.
Papini
,
L.
Franci
,
S.
Landi
,
A.
Verdini
,
L.
Matteini
, and
P.
Hellinger
, “
Can Hall magnetohydrodynamics explain plasma turbulence at sub-ion scales?
,”
Astrophys. J.
870
,
52
(
2019
);
E.
Papini
,
L.
Franci
,
S.
Landi
,
A.
Verdini
,
L.
Matteini
, and
P.
Hellinger
,
e-print arXiv:1810.02210.
17.
M. A.
Shay
,
C. C.
Haggerty
,
W. H.
Matthaeus
,
T. N.
Parashar
,
M.
Wan
, and
P.
Wu
, “
Turbulent heating due to magnetic reconnection
,”
Phys. Plasmas
25
,
012304
(
2018
).
18.
T. D.
Phan
,
M. A.
Shay
,
J. T.
Gosling
,
M.
Fujimoto
,
J. F.
Drake
,
G.
Paschmann
,
M.
Oieroset
,
J. P.
Eastwood
, and
V.
Angelopoulos
, “
Electron bulk heating in magnetic reconnection at Earth's magnetopause: Dependence on the inflow Alfvén speed and magnetic shear
,”
Geophys. Res. Lett.
40
,
4475
4480
, (
2013
).
19.
T. D.
Phan
,
J. F.
Drake
,
M. A.
Shay
,
J. T.
Gosling
,
G.
Paschmann
,
J. P.
Eastwood
,
M.
Oieroset
,
M.
Fujimoto
, and
V.
Angelopoulos
, “
Ion bulk heating in magnetic reconnection exhausts at Earth's magnetopause: Dependence on the inflow Alfvén speed and magnetic shear angle
,”
Geophys. Res. Lett.
41
,
7002
7010
, (
2014
).
20.
M. A.
Shay
,
C. C.
Haggerty
,
T. D.
Phan
,
J. F.
Drake
,
P. A.
Cassak
,
P.
Wu
,
M.
Oieroset
,
M.
Swisdak
, and
K.
Malakit
, “
Electron heating during magnetic reconnection: A simulation scaling study
,”
Phys. Plasmas
21
,
122902
(
2014
).
21.
C. C.
Haggerty
,
M. A.
Shay
,
J. F.
Drake
,
T. D.
Phan
, and
C. T.
McHugh
, “
The competition of electron and ion heating during magnetic reconnection
,”
Geophys. Res. Lett.
42
,
9657
9665
, (
2015
).
22.
M. A.
Shay
,
J. F.
Drake
,
R. E.
Denton
, and
D.
Biskamp
, “
Structure of the dissipation region during collisionless magnetic reconnection
,”
J. Geophys. Res.
103
,
9165
, (
1998
).
23.
L.
Chacón
,
A. N.
Simakov
, and
A.
Zocco
, “
Steady-state properties of driven magnetic reconnection in 2d electron magnetohydrodynamics
,”
Phys. Rev. Lett.
99
,
235001
(
2007
).
24.
N.
Jain
,
A. S.
Sharma
,
L. M.
Zelenyi
, and
H. V.
Malova
, “
Electron scale structures of thin current sheets in magnetic reconnection
,”
Ann. Geophys.
30
,
661
666
(
2012
).
25.
D.
Biskamp
,
E.
Schwarz
, and
J. F.
Drake
, “
Ion-controlled collisionless magnetic reconnection
,”
Phys. Rev. Lett.
75
,
3850
(
1995
).
26.
B. U. Ö.
Sonnerup
, “
Magnetic field reconnection
,” in
Solar System Plasma Physics
, edited by
L. J.
Lanzerotti
,
C. F.
Kennel
, and
E. N.
Parker
(
North Holland Publishing
,
Amsterdam
,
1979
), Vol.
3
, p.
46
.
27.
T.
Terasawa
, “
Hall current effect on tearing mode instability
,”
Geophys. Res. Lett.
10
,
475
, (
1983
).
28.
M. E.
Mandt
,
R. E.
Denton
, and
J. F.
Drake
, “
Transition to whistler mediated magnetic reconnection
,”
Geophys. Res. Lett.
21
,
73
76
, (
1994
).
29.
C. T.
Haynes
,
D.
Burgess
, and
E.
Camporeale
, “
Reconnection and electron temperature anisotropy in sub-proton scale plasma turbulence
,”
Astrophys. J.
783
,
38
(
2014
).
30.
W. H.
Matthaeus
and
S. L.
Lamkin
, “
Turbulent magnetic reconnection
,”
Phys. Fluids
29
,
2513
2534
(
1986
).
31.
A.
Zeiler
,
D.
Biskamp
,
J. F.
Drake
,
B. N.
Rogers
,
M. A.
Shay
, and
M.
Scholer
, “
Three-dimensional particle simulations of collisionless magnetic reconnection
,”
J. Geophys. Res.
107
,
1230
, (
2002
).
32.
M.
Swisdak
,
J. F.
Drake
,
J. G.
McIlhargey
, and
M. A.
Shay
, “
The transition from anti-parallel to component magnetic reconnection
,”
J. Geophys. Res.
110
,
A05210
, (
2005
).
33.
P. L.
Pritchett
, “
Collisionless magnetic reconnection in a three-dimensional open system
,”
J. Geophys. Res.
106
,
25961
, (
2001
).
34.
M. V.
Goldman
,
G.
Lapenta
,
D. L.
Newman
,
S.
Markidis
, and
H.
Che
, “
Jet deflection by very weak guide fields during magnetic reconnection
,”
Phys. Rev. Lett.
107
,
135001
(
2011
).
35.
R.
Kleva
,
J.
Drake
, and
F.
Waelbroeck
, “
Fast reconnection in high temperature plasma
,”
Phys. Plasmas
2
,
23
(
1995
).
36.
H.
Karimabadi
,
D.
Krauss-Vargan
,
N.
Omidi
, and
H. X.
Vu
, “
Magnetic structure of the reconnection layer and core field generation in plasmoids
,”
J. Geophys. Res.
104
,
12313
12326
, (
1999
).
37.
J. M.
TenBarge
,
W.
Daughton
,
H.
Karimabadi
,
G. G.
Howes
, and
W.
Dorland
, “
Collisionless reconnection in the large guide field regime: Gyrokinetic versus particle-in-cell simulations
,”
Phys. Plasmas
21
,
020708
(
2014
).
38.
P. A.
Muñoz
,
D.
Told
,
P.
Kilian
,
J.
Büchner
, and
F.
Jenko
, “
Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I. Macroscopic effects of the electron flows
,”
Phys. Plasmas
22
,
082110
(
2015
).
39.
B. N.
Rogers
,
R. E.
Denton
,
J. F.
Drake
, and
M. A.
Shay
, “
Role of dispersive waves in collisionless magnetic reconnection
,”
Phys. Rev. Lett.
87
,
195004
(
2001
).
40.
A.
Stanier
,
A. N.
Simakov
,
L.
Chacón
, and
W.
Daughton
, “
Fluid vs. kinetic magnetic reconnection with strong guide fields
,”
Phys. Plasmas
22
,
101203
(
2015
).
41.
M. A.
Shay
and
J. F.
Drake
, “
The role of electron dissipation on the rate of collisionless magnetic reconnection
,”
Geophys. Res. Lett.
25
,
3759
, (
1998
).
42.
M. A.
Shay
,
J. F.
Drake
,
B. N.
Rogers
, and
R. E.
Denton
, “
The scaling of collisionless, magnetic reconnection for large systems
,”
Geophys. Res. Lett.
26
,
2163
, (
1999
).
43.
J.
Birn
,
J. F.
Drake
,
M. A.
Shay
,
B. N.
Rogers
,
R. E.
Denton
,
M.
Hesse
,
M.
Kuznetsova
,
Z. W.
Ma
,
A.
Bhattacharjee
,
A.
Otto
, and
P. L.
Pritchett
, “
GEM magnetic reconnection challenge
,”
J. Geophys. Res.
106
,
3715
, (
2001
).
44.
G. G.
Howes
,
S. C.
Cowley
,
W.
Dorland
,
G. W.
Hammett
,
E.
Quataert
, and
A. A.
Schekochihin
, “
Astrophysical gyrokinetics: Basic equations and linear theory
,”
Astrophys. J.
651
,
590
614
(
2006
).
45.
A. A.
Schekochihin
,
S. C.
Cowley
,
W.
Dorland
,
G. W.
Hammett
,
G. G.
Howes
,
E.
Quataert
, and
T.
Tatsuno
, “
Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas
,”
Astrophys. J. Suppl. Ser.
182
,
310
377
(
2009
).
46.
M. A.
Shay
,
J. F.
Drake
,
B. N.
Rogers
, and
R. E.
Denton
, “
Alfvénic collisionless reconnection and the Hall term
,”
J. Geophys. Res.
106
,
3759
, (
2001
).
47.
P. A.
Cassak
,
M. A.
Shay
, and
J. F.
Drake
, “
A saddle-node bifurcation model of magnetic reconnection onset
,”
Phys. Plasmas
17
,
062105
(
2010
).
48.
M. A.
Shay
,
J. F.
Drake
,
J. P.
Eastwood
, and
T. D.
Phan
, “
Super-Alfvénic propagation of substorm reconnection signatures and poynting flux
,”
Phys. Rev. Lett.
107
,
065001
(
2011
).
49.
P. S.
Pyakurel
,
M. A.
Shay
,
C. C.
Haggerty
,
T. N.
Parashar
,
J. F.
Drake
,
P. A.
Cassak
, and
S. P.
Gary
, “
Super-Alfvénic propagation and damping of reconnection onset signatures
,”
J. Geophys. Res.
123
,
341
349
, (
2018
).
50.
N.
Bessho
and
A.
Bhattacharjee
, “
Collisionless reconnection in an electron-positron plasma
,”
Phys. Rev. Lett.
95
,
245001
(
2005
).
51.
W.
Daughton
and
H.
Karimabadi
, “
Collisionless magnetic reconnection in large-scale electron-positron plasmas
,”
Phys. Plasmas
14
,
072303
(
2007
).
52.
L.
Chacón
,
A. N.
Simakov
,
V. S.
Lukin
, and
A.
Zocco
, “
Fast reconnection in nonrelativistic 2d electron-positron plasmas
,”
Phys. Rev. Lett.
101
,
025003
(
2008
).
53.
Y.-H.
Liu
,
W.
Daughton
,
H.
Karimabadi
,
H.
Li
, and
S. P.
Gary
, “
Do dispersive waves play a role in collisionless magnetic reconnection?
,”
Phys. Plasmas
21
,
022113
(
2014
).
54.
K. G.
Klein
and
G. G.
Howes
, “
Predicted impacts of proton temperature anisotropy on solar wind turbulence
,”
Phys. Plasmas
22
,
032903
(
2015
).
55.
V.
Formisano
and
C. F.
Kennel
, “
Small amplitude waves in high β plasmas
,”
J. Plasma Phys.
3
,
55
74
(
1969
).
56.
T. D.
Phan
,
J. F.
Drake
,
M. A.
Shay
,
F. S.
Mozer
, and
J. P.
Eastwood
, “
Evidence for an elongated (>60 ion skin depths) electron diffusion region during fast magnetic reconnection
,”
Phys. Rev. Lett.
99
,
255002
(
2007
).
57.
F. D.
Wilder
,
R. E.
Ergun
,
S.
Eriksson
,
T. D.
Phan
,
J. L.
Burch
,
N.
Ahmadi
,
K. A.
Goodrich
,
D. L.
Newman
,
K. J.
Trattner
,
R. B.
Torbert
,
B. L.
Giles
,
R. J.
Strangeway
,
W.
Magnes
,
P.-A.
Lindqvist
, and
Y.-V.
Khotyaintsev
, “
Multipoint measurements of the electron jet of symmetric magnetic reconnection with a moderate guide field
,”
Phys. Rev. Lett.
118
,
265101
(
2017
).
58.
H.
Karimabadi
,
V.
Roytershteyn
,
M.
Wan
,
W. H.
Matthaeus
,
W.
Daughton
,
P.
Wu
,
M.
Shay
,
B.
Loring
,
J.
Borovsky
,
E.
Leonardis
,
S. C.
Chapman
, and
T. K. M.
Nakamura
, “
Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas
,”
Phys. Plasmas
20
,
012303
(
2013
).
59.
F.
Califano
,
S. S.
Cerri
,
M.
Faganello
,
D.
Laveder
, and
M. W.
Kunz
, “
Electron-only magnetic reconnection in plasma turbulence
,” preprint arXiv:1810.03957 (
2018
).
60.
H.
Karimabadi
,
J.
Dorelli
,
V.
Roytershteyn
,
W.
Daughton
, and
L.
Chacón
, “
Flux pileup in collisionless magnetic reconnection: Bursty interaction of large flux ropes
,”
Phys. Rev. Lett.
107
,
25002
(
2011
).
61.
M.
Øieroset
,
T. D.
Phan
,
J. F.
Drake
,
J. P.
Eastwood
,
S. A.
Fuselier
,
R. J.
Strangeway
,
C.
Haggerty
,
M. A.
Shay
,
M.
Oka
,
S.
Wang
,
L.-J.
Chen
,
I.
Kacem
,
B.
Lavraud
,
V.
Angelopoulos
,
J. L.
Burch
,
R. B.
Torbert
,
R. E.
Ergun
,
Y.
Khotyaintsev
,
P. A.
Lindqvist
,
D. J.
Gershman
,
B. L.
Giles
,
C.
Pollock
,
T. E.
Moore
,
C. T.
Russell
,
Y.
Saito
,
L. A.
Avanov
, and
W.
Paterson
, “
Reconnection with magnetic flux pileup at the interface of converging jets at the magnetopause
,”
Geophys. Res. Lett.
46
,
1937
1946
, (
2019
).
62.
J. F.
Drake
,
M. A.
Shay
, and
M.
Swisdak
, “
The Hall fields and fast magnetic reconnection
,”
Phys. Plasmas
15
,
042306
(
2008
).
63.
W.
Daughton
,
V.
Roytershteyn
,
H.
Karimabadi
,
L.
Yin
,
B.
Albright
,
B.
Bergen
, and
K.
Bowers
, “
Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas
,”
Nat. Phys.
7
,
539
542
(
2011
).
64.
Y.-H.
Liu
,
W.
Daughton
,
H.
Karimabadi
,
H.
Li
, and
V.
Roytershteyn
, “
Bifurcated structure of the electron diffusion region in three-dimensional magnetic reconnection
,”
Phys. Rev. Lett.
110
,
265004
(
2013
).
65.
J. D.
Huba
and
L. I.
Rudakov
, “
Three-dimensional Hall magnetic reconnection
,”
Phys. Plasmas
9
,
4435
4438
(
2002
).
66.
M. A.
Shay
,
J. F.
Drake
,
M.
Swisdak
,
W.
Dorland
, and
B. N.
Rogers
, “
Inherently three-dimensional magnetic reconnection: A mechanism for bursty bulk flows?
,”
Geophys. Res. Lett.
30
,
1345
, (
2003
).
67.
E. R.
Priest
,
G.
Hornig
, and
D. I.
Pontin
, “
On the nature of three-dimensional magnetic reconnection
,”
J. Geophys. Res.
108
,
1285
, (
2003
).
68.
J. C.
Dorelli
,
A.
Bhattacharjee
, and
J.
Raeder
, “
Separator reconnection at Earth's dayside magnetopause under generic northward interplanetary magnetic field conditions
,”
J. Geophys. Res.
112
,
A02202
, (
2007
).
69.
X.
Sun
,
T. P.
Intrator
,
L.
Dorf
,
J.
Sears
,
I.
Furno
, and
G.
Lapenta
, “
Flux rope dynamics: Experimental study of bouncing and merging
,”
Phys. Rev. Lett.
105
,
255001
(
2010
).
70.
S.
Oughton
,
E. R.
Priest
, and
W. H.
Matthaeus
, “
The influence of a mean magnetic field on three-dimensional MHD turbulence
,”
J. Fluid Mech.
280
,
95
(
1994
).
71.
J. M.
TenBarge
and
G. G.
Howes
, “
Evidence of critical balance in kinetic Alfvén wave turbulence simulations
,”
Phys. Plasmas
19
,
055901
(
2012
).
72.
J. W.
Bieber
,
W.
Wanner
, and
W. H.
Matthaeus
, “
Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport
,”
J. Geophys. Res.
101
,
2511
, (
1996
).
73.
F.
Sahraoui
,
M. L.
Goldstein
,
G.
Belmont
,
P.
Canu
, and
L.
Rezeau
, “
Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind
,”
Phys. Rev. Lett.
105
,
131101
(
2010
).
74.
Y.
Narita
,
K.-H.
Glassmeier
,
M. L.
Goldstein
,
U.
Motschmann
, and
F.
Sahraoui
, “
Three-dimensional spatial structures of solar wind turbulence from 10 000-km to 100-km scales
,”
Ann. Geophys.
29
,
1731
1738
(
2011
).
75.
V.
Zhdankin
,
D. A.
Uzdensky
,
J. C.
Perez
, and
S.
Boldyrev
, “
Statistical analysis of current sheets in three-dimensional magnetohydrodynamic turbulence
,”
Astrophys. J.
771
,
124
(
2013
).
76.
M.
Wan
,
A. F.
Rappazzo
,
W. H.
Matthaeus
,
S.
Servidio
, and
S.
Oughton
, “
Dissipation and reconnection in boundary-driven reduced magnetohydrodynamics
,”
Astrophys. J.
797
,
63
(
2014
).
77.
W. H.
Matthaeus
,
M. L.
Goldstein
, and
D. A.
Roberts
, “
Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind
,”
J. Geophys. Res.
95
,
20673
20683
, (
1990
).
78.
Computational and Information Systems Laboratory
,
Cheyenne: HPE/SGI ICE XA System (University Community Computing)
(
National Center for Atmospheric Research
,
2017
), see https://www2.cisl.ucar.edu/user-support/acknowledging-ncarcisl.
You do not currently have access to this content.