A theoretical study is presented for the oblique propagation of linear and nonlinear ion acoustic waves in a dense electron-ion quantum plasma, as that found in dense astrophysical objects like white dwarfs, rotating around an axis at an angle θ with the direction of the constant magnetic field B=B0ẑ. In the absence of exact analytical solutions, we look for approximate ones by applying different approximation techniques like linearization, reductive perturbation, phase portraits, etc. The linear dispersion relation, obtained as a quadratic equation in the plasma frequency ω2, reveals interesting features. The small amplitude analysis for the nonlinear waves, using the reductive perturbation technique, yields the Korteweg–de Vries equation, whose solutions are solitary waves. The effects of various physical parameters like speed and angle of rotation, strength of the magnetic field, the quantum diffraction term, etc., on the shape of the nonlinear structures, are investigated numerically. It is observed that the different plasma parameters have similar effects on both small and arbitrary amplitude waves—stronger magnetic field, larger quantum effects, and higher speed of rotation decrease their width. Furthermore, as the angle between the rotation axis and magnetic axis decreases, i.e., the rotation is aligned with the direction of the magnetic field, the waves get sharper. Additionally, the energy of the small amplitude solitary wave decreases with an increase in the speed of rotation and stronger quantum effects.

1.
S. L.
Shapiro
and
S. A.
Teukolsky
,
Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects
(
Wiley
,
New York
,
1983
).
2.
A. ur
Rahman
,
M.
Mc Kerr
,
W. F.
El-Taibany
,
I.
Kourakis
, and
A.
Qamar
,
Phys. Plasmas
22
,
022305
(
2015
), and references therein.
4.
A. K.
Harding
and
D.
Lai
,
Rep. Prog. Phys.
69
,
2631
(
2006
).
5.
N. C.
Woolsey
,
C.
Courtois
, and
R. O.
Dendy
,
Plasma Phys. Controlled Fusion
46
,
397
(
2004
).
6.
G. C.
Das
and
C.
Uberoi
,
J. Geophys. Res.
77
,
5597
, (
1972
).
7.
M.
Marklund
and
P. K.
Shukla
,
Rev. Mod. Phys.
78
,
591
(
2006
).
8.
V. I.
Berezhiani
,
D. D.
Tskhakaya
, and
P. K.
Shukla
,
Phys. Rev. A
46
,
6608
(
1992
).
9.
T. S.
Hahn
,
Phys. Fluids B
4
,
4046
(
1992
).
10.
S.
Chandrashekhar
,
Mon. Not. R. Astron. Soc.
113
,
667
(
1953
).
11.
B.
Lenhert
,
Astrophys. J.
119
,
647
(
1954
).
12.
R.
Hide
,
Philos. Trans. R. Soc. A
259
,
615
(
1966
).
13.
G. C.
Das
and
A.
Nag
,
Phys. Plasmas
14
,
083705
(
2007
).
14.
A.
Ahmad
and
W.
Masood
,
Phys. Plasmas
23
,
052102
(
2016
).
15.
A.
Mushtaq
,
J. Phys A: Math. Theor.
43
,
315501
(
2010
).
16.
S.
Hussain
,
N.
Akhtar
, and
S.
Mahmood
,
Astrophys. Space Sci.
348
,
475
(
2013
).
17.
T. K.
Baluku
,
M. A.
Hellberg
,
I.
Kourakis
, and
N. S.
Saini
,
Phys. Plasmas
17
,
053702
(
2010
).
18.
S. A.
Khan
and
W.
Masood
,
Phys. Plasmas
15
,
062301
(
2008
).
19.
M. Y.
Khan
and
J.
Iqbal
,
Chaos, Solitons Fractals
107
,
13
(
2018
).
20.
A.
Mushtaq
and
H. A.
Shah
,
Phys. Plasmas
12
,
072306
(
2005
).
21.
A.
Mushtaq
,
H. A.
Shah
,
N.
Rubab
, and
G.
Murtaza
,
Phys. Plasmas
13
,
062903
(
2006
).
22.
W. F.
El-Taibany
,
A.
Mushtaq
,
W. M.
Moslem
, and
M.
Wadati
,
Phys. Plasmas
17
,
034501
(
2010
).
23.
S.
Hussain
,
N.
Akhtar
, and
H.
Hasnain
,
Phys. Plasmas
21
,
122120
(
2014
).
24.
A. A.
Mamun
and
P. K.
Shukla
,
Phys. Plasmas
9
,
1468
(
2002
).
25.
A. A.
Mamun
and
P. K.
Shukla
,
Phys. Plasmas
17
,
104504
(
2010
).
26.
P.
Chatterjee
,
U. N.
Ghosh
,
K.
Roy
,
S. V.
Muniandy
,
C. S.
Wong
, and
B.
Sahu
,
Phys. Plasmas
17
,
122314
(
2010
).
27.
F.
Haas
,
Quantum Plasmas: An Hydrodynamical Approach
, Springer Series on Atomic, Optical, and Plasma Physics
65
(
Springer
,
2011
).
28.
G.
Chabrier
,
D.
Saumon
, and
A. Y.
Potekhin
,
J. Phys. A: Math. Gen.
39
,
4411
(
2006
).
29.
G.
Chabrier
,
F.
Douchin
, and
A. Y.
Potekhin
,
J. Phys.: Condens. Matter
14
,
9133
(
2002
).
30.
A. Y.
Potekhin
and
G.
Chabrier
,
Phys. Rev. E
62
,
8554
(
2000
).
31.
A.
Spitovsky
,
Astrophys. J.
673
,
L39
(
2008
).
32.
C.
Bhowmik
,
A. P.
Misra
, and
P. K.
Shukla
,
Phys. Plasmas
14
,
122107
(
2007
).
33.
T. N.
Kato
and
H.
Takabe
,
Astrophys. J.
681
,
L93
(
2008
).
34.
F.
Haas
,
L. G.
Garcia
,
J.
Goedert
, and
G.
Manfredi
,
Phys. Plasmas
10
,
3858
(
2003
).
35.
S. A.
Ema
,
M. R.
Hossen
, and
A. A.
Mamun
,
Phys. Plasmas
22
,
092108
(
2015
).
36.
M. R.
Hossen
,
L.
Nahar
,
S.
Sultana
, and
A. A.
Mamun
,
Astrophys. Space Sci.
353
,
123
(
2014
).
37.
A. A.
Mamun
,
Phys. Plasmas
25
,
022307
(
2018
).
38.
S. K.
El-Labany
,
W. F.
El-Taibany
,
E. E.
Behery
, and
S. M.
Fouda
,
Phys. Plasmas
25
,
013701
(
2018
).
39.
D. I.
Palade
,
Phys. Rev. B
98
,
245401
(
2018
).
40.
X.
Gao
,
J.
Tao
,
G.
Vignale
, and
I. V.
Tokatly
,
Phys. Rev. B
81
,
195106
(
2010
).
41.
Z. A.
Moldabekov
,
M.
Bonitz
, and
T. S.
Ramazanov
,
Phys. Plasmas
25
,
031903
(
2018
).
42.
F.
Haas
and
S.
Mahmood
,
Phys. Rev. E
92
,
053112
(
2015
).
43.
F.
Haas
and
S.
Mahmood
,
Phys. Rev E
94
,
033212
(
2016
).
44.
H. R.
Pakzad
,
Can. J. Phys.
89
,
961
(
2011
).
45.
A. P.
Misra
and
N. K.
Ghosh
,
Phys. Lett. A
372
,
6412
(
2008
).
46.
Q.
Haque
and
S.
Ali Shan
,
Phys. Lett. A
382
,
2744
(
2018
).
47.
P. K.
Shukla
and
B.
Eliasson
,
Rev. Mod. Phys.
83
,
885
(
2011
).
48.
F.
Haas
and
B.
Elliasson
,
Phys. Scr.
90
,
088005
(
2015
).
49.
A.
Shah
,
S.
Mahmood
, and
Q.
Haque
,
Phys. Plasmas
19
,
032302
(
2012
).
50.
G.
Manfredi
and
F.
Haas
,
Phys. Rev. B
64
,
075316
(
2001
).
51.
R. C.
Davidson
,
Methods in Nonlinear Plasma Theory
(
Academic
,
New York
,
1972
).
52.
H. M.
Pakzad
and
K.
Javidan
,
Astrophys. Space Sci.
333
,
257
(
2011
).
53.
Y.
Zou
,
D.
Pazo
,
M. X.
Romano
,
M.
Thiel
, and
J.
Kurths
,
Phys. Rev. E
76
,
016210
(
2007
).
54.
D.
Rand
,
S.
Ostlund
,
J.
Sethna
, and
E. D.
Siggia
,
Phys. Rev. E
49
,
132
(
1982
).
You do not currently have access to this content.