The understanding of magnetic reconnection in three-dimensions (3D) is far shallower than its counterpart in two-dimensions due to its potential complication, not to mention the evolving of the spontaneously growing turbulence. We investigate the reason for reconnection acceleration on the characters and development of diffusion regions and sheared 3D energy modes (energy modes that are not parallel to the antiparallel magnetic fields) during the turbulence building stage. We found that multiple reconnection layers emerge due to the growth of 3D sheared tearing instability. Diffusion regions in adjacent reconnection layers form an inflow-outflow coupling that enhances the local reconnection. Further coupling of the existing energy modes breeds new energy modes near the current sheet edge. As reconnection layers span and interact with each other across the whole current sheet, global magnetic energy consumption accelerates. The significant contribution of 3D energy modes and their interaction to the reconnection rate enhancement seems to be independent of magnetic diffusivity. On the other hand, the global guide field changes the layout of the 3D reconnection layer and thus determines whether the system is fast-reconnection-preferable.

1.
G.
Kowal
,
A.
Lazarian
,
E. T.
Vishniac
, and
K.
Otmianowska-Mazur
, “
Numerical tests of fast reconnection in weakly stochastic magnetic fields
,”
Astrophys. J.
700
,
63
85
(
2009
);
G.
Kowal
,
A.
Lazarian
,
E. T.
Vishniac
, and
K.
Otmianowska-Mazur
, e-print arXiv:0903.2052 [astro-ph.GA].
2.
J. S.
Oishi
,
M.-M.
Mac Low
,
D. C.
Collins
, and
M.
Tamura
, “
Self-generated turbulence in magnetic reconnection
,”
Astrophys. J. Lett.
806
,
L12
(
2015
);
J. S.
Oishi
,
M.-M.
Mac Low
,
D. C.
Collins
, and
M.
Tamura
, e-print arXiv:1505.04653 [astro-ph.SR].
3.
Y.-M.
Huang
and
A.
Bhattacharjee
, “
Turbulent magnetohydrodynamic reconnection mediated by the plasmoid instability
,”
Astrophys. J.
818
,
20
(
2016
);
Y.-M.
Huang
and
A.
Bhattacharjee
, e-print arXiv:1512.01520 [physics.plasm-ph].
4.
G.
Kowal
,
D. A.
Falceta-Gonçalves
,
A.
Lazarian
, and
E. T.
Vishniac
, “
Statistics of reconnection-driven turbulence
,”
Astrophys. J.
838
,
91
(
2017
);
G.
Kowal
,
D. A.
Falceta-Gonçalves
,
A.
Lazarian
, and
E. T.
Vishniac
, e-print arXiv:1611.03914.
5.
A.
Beresnyak
, “
Three-dimensional spontaneous magnetic reconnection
,”
Astrophys. J.
834
,
47
(
2017
);
A.
Beresnyak
, e-print arXiv:1301.7424 [astro-ph.SR].
6.
T. K. M.
Nakamura
,
R.
Nakamura
,
Y.
Narita
,
W.
Baumjohann
, and
W.
Daughton
, “
Multi-scale structures of turbulent magnetic reconnection
,”
Phys. Plasmas
23
,
052116
(
2016
).
7.
N. F.
Loureiro
and
S.
Boldyrev
, “
Collisionless reconnection in magnetohydrodynamic and kinetic turbulence
,”
Astrophys. J.
850
,
182
(
2017
).
8.
W. H.
Matthaeus
and
S. L.
Lamkin
, “
Rapid magnetic reconnection caused by finite amplitude fluctuations
,”
Phys. Fluids
28
,
303
307
(
1985
).
9.
A.
Lazarian
and
E. T.
Vishniac
, “
Reconnection in a weakly stochastic field
,”
Astrophys. J.
517
,
700
718
(
1999
);
A.
Lazarian
and
E. T.
Vishniac
, e-print arXiv:astro-ph/9811037.
10.
P.
Goldreich
and
S.
Sridhar
, “
Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence
,”
Astrophys. J.
438
,
763
775
(
1995
).
11.
S.
Boldyrev
and
N. F.
Loureiro
, “
Magnetohydrodynamic turbulence mediated by reconnection
,”
Astrophys. J.
844
,
125
(
2017
);
S.
Boldyrev
and
N. F.
Loureiro
, e-print arXiv:1706.07139 [physics.plasm-ph].
12.
A.
Mallet
,
A. A.
Schekochihin
, and
B. D. G.
Chandran
, “
Disruption of sheet-like structures in Alfvénic turbulence by magnetic reconnection
,”
Mon. Not. R. Astron. Soc.
468
,
4862
4871
(
2017
);
A.
Mallet
,
A. A.
Schekochihin
, and
B. D. G.
Chandran
, e-print arXiv:1612.07604 [astro-ph.SR].
13.
A. A.
Galeev
and
L. M.
Zelenyi
, “
Model of magnetic-field reconnection in a plane layer of collisionless plasma
,”
ZhETF Pisma Redaktsiiu
25
,
407
411
(
1977
).
14.
M.
Onofri
,
L.
Primavera
,
F.
Malara
, and
P.
Veltri
, “
Three-dimensional simulations of magnetic reconnection in slab geometry
,”
Phys. Plasmas
11
,
4837
4846
(
2004
).
15.
S.
Landi
,
P.
Londrillo
,
M.
Velli
, and
L.
Bettarini
, “
Three-dimensional simulations of compressible tearing instability
,”
Phys. Plasmas
15
,
012302
(
2008
).
16.
S.
Wang
,
T.
Yokoyama
, and
H.
Isobe
, “
Three-dimensional MHD magnetic reconnection simulations with a finite guide field: Proposal of the shock-evoking positive-feedback model
,”
Astrophys. J.
811
,
31
(
2015
);
S.
Wang
,
T.
Yokoyama
, and
H.
Isobe
, e-print arXiv:1508.03140 [astro-ph.SR].
17.
K.
Shibata
and
S.
Tanuma
, “
Plasmoid-induced-reconnection and fractal reconnection
,”
Earth, Planets, Space
53
,
473
482
(
2001
);
K.
Shibata
and
S.
Tanuma
, e-print arXiv:astro-ph/0101008.
18.
N. F.
Loureiro
,
S. C.
Cowley
,
W. D.
Dorland
,
M. G.
Haines
, and
A. A.
Schekochihin
, “
X-point collapse and saturation in the nonlinear tearing mode reconnection
,”
Phys. Rev. Lett.
95
,
235003
(
2005
);
[PubMed]
N. F.
Loureiro
,
S. C.
Cowley
,
W. D.
Dorland
,
M. G.
Haines
, and
A. A.
Schekochihin
, e-print arXiv:physics/0507206.
19.
Y.-M.
Huang
and
A.
Bhattacharjee
, “
Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime
,”
Phys. Plasmas
17
,
062104
(
2010
);
Y.-M.
Huang
and
A.
Bhattacharjee
, e-print arXiv:1003.5951 [physics.plasm-ph].
20.
D.
Grasso
,
D.
Borgogno
, and
F.
Pegoraro
, “
Secondary instabilities in two- and three-dimensional magnetic reconnection in fusion relevant plasmas)
,”
Phys. Plasmas
14
,
055703
(
2007
).
21.
T.
Kudoh
,
K.
Shibata
, and
R.
Matsumoto
, “
2. 5D nonsteady MHD simulations of magnetically driven jets from accretion disks by using the CIP-MOCCT MethodCD
,” in
Numerical Astrophysics
, Astrophysics and Space Science Library Vol.
240
, edited by
S. M.
Miyama
,
K.
Tomisaka
, and
T.
Hanawa
(
Springer
,
1999
), p.
203
.
22.
A.
Lapidus
, “
A detached shock calculation by second-order finite differences
,”
J. Comput. Phys.
2
,
154
177
(
1967
).
23.
B. D.
Jemella
,
M. A.
Shay
,
J. F.
Drake
, and
B. N.
Rogers
, “
Impact of frustrated singularities on magnetic island evolution
,”
Phys. Rev. Lett.
91
,
125002
(
2003
).
24.
A.
Bhattacharjee
,
Y.-M.
Huang
,
H.
Yang
, and
B.
Rogers
, “
Fast reconnection in high-Lundquist-number plasmas due to the plasmoid Instability
,”
Phys. Plasmas
16
,
112102
(
2009
);
A.
Bhattacharjee
,
Y.-M.
Huang
,
H.
Yang
, and
B.
Rogers
, e-print arXiv:0906.5599 [physics.plasm-ph].
25.
N. F.
Loureiro
,
R.
Samtaney
,
A. A.
Schekochihin
, and
D. A.
Uzdensky
, “
Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas
,”
Phys. Plasmas
19
,
042303
(
2012
);
N. F.
Loureiro
,
R.
Samtaney
,
A. A.
Schekochihin
, and
D. A.
Uzdensky
, e-print arXiv:1108.4040 [astro-ph.SR].
26.
T.
Shibayama
,
K.
Kusano
,
T.
Miyoshi
,
T.
Nakabou
, and
G.
Vekstein
, “
Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks
,”
Phys. Plasmas
22
,
100706
(
2015
).
27.
K.
Kusano
and
T.
Sato
, “
Non-linear coupling effects on the relaxation process in the reversed field pinch
,”
Nucl. Fusion
27
,
821
(
1987
).
28.
R. B.
Dahlburg
,
S. K.
Antiochos
, and
T. A.
Zang
, “
Secondary instability in three-dimensional magnetic reconnection
,”
Phys. Fluids B
4
,
3902
3914
(
1992
).
29.
S. A.
Orszag
and
A. T.
Patera
, “
Secondary instability of wall-bounded shear flows
,”
J. Fluid Mech.
128
,
347
385
(
1983
).
30.
R. S.
Steinolfson
, “
Energetics and the resistive tearing mode—Effects of Joule heating and radiation
,”
Phys. Fluids
26
,
2590
2602
(
1983
).
31.
P. A.
Sweet
, “
The neutral point theory of solar flares
,” in
IAU Symposium Electromagnetic Phenomena in Cosmical Physics
, edited by
B.
Lehnert
(
1958
), Vol.
6
, p.
123
.
32.
E. N.
Parker
, “
Sweet's mechanism for merging magnetic fields in conducting fluids
,”
J. Geophys. Res.
62
,
509
520
, (
1957
).
33.
H. P.
Furth
,
J.
Killeen
, and
M. N.
Rosenbluth
, “
Finite-resistivity instabilities of a sheet pinch
,”
Phys. Fluids
6
,
459
484
(
1963
).
34.
B.
Coppi
,
R.
Galvao
,
R.
Pellat
,
M.
Rosenbluth
, and
P.
Rutherford
, “
Resistive internal kink modes
,”
Fiz. Plazmy
2
,
961
966
(
1976
).
35.
P. L.
Pritchett
,
Y. C.
Lee
, and
J. F.
Drake
, “
Linear analysis of the double-tearing mode
,”
Phys. Fluids
23
,
1368
1374
(
1980
).
36.
T.
Sato
and
T.
Hayashi
, “
Externally driven magnetic reconnection and a powerful magnetic energy converter
,”
Phys. Fluids
22
,
1189
1202
(
1979
).
37.
H.
Kitabata
,
T.
Hayashi
,
T.
Sato
, and
Complexity Group,
Impulsive nature in magnetohydrodynamic driven reconnection
,”
J. Phys. Soc. Jpn.
65
,
3208
(
1996
).
You do not currently have access to this content.