In this paper, electromagnetic emissions produced by a beam-plasma system are investigated using particle-in-cell simulations for the particular case when the typical transverse size of both the 100 keV electron beam and the produced plasma channel is comparable to the radiation wavelength. The interest in this regime of beam-plasma interaction is associated with highly efficient generation of electromagnetic waves near the plasma frequency harmonics that has been recently observed in laboratory experiments on the GOL-3 mirror trap. It has been found that the radiation power only from the vicinity of the doubled plasma frequency in these experiments can reach 1% of the total beam power. Subsequent theoretical and simulation studies have shown that the most likely candidate for explaining such efficient generation of electromagnetic radiation is the mechanism of a beam-driven plasma antenna based on the conversion of the most unstable plasma oscillations on a longitudinal density modulation of plasma ions. In this paper, we investigate how effectively this mechanism can work in a real experiment at the GOL-3 facility, when a thin subrelativistic electron beam gets a large angular spread due to compression by a magnetic field, and the gas into which it is injected has macroscopic density gradients.

1.
D. A.
Gurnett
and
R. R.
Anderson
,
Science
194
,
1159
(
1976
).
2.
M. V.
Goldman
,
G. F.
Reiter
, and
D. R.
Nicholson
,
Phys. Fluids
23
,
388
(
1980
).
3.
D. A.
Whelan
and
R. L.
Stenzel
,
Phys. Fluids
28
,
958
(
1985
).
4.
P. L.
Pritchett
and
J. M.
Dawson
,
Phys. Fluids
26
,
1114
(
1983
).
5.
G.
Benford
,
D.
Tzach
,
K.
Kato
, and
D. F.
Smith
,
Phys. Rev. Lett.
45
,
1182
(
1980
).
6.
D. A.
Whelan
and
R. L.
Stenzel
,
Phys. Rev. Lett.
47
,
95
(
1981
).
7.
P. Y.
Cheung
,
A. Y.
Wong
,
C. B.
Darrow
, and
S. J.
Qian
,
Phys. Rev. Lett.
48
,
1348
(
1982
).
8.
H.
Che
,
M. L.
Goldstein
,
P. H.
Diamond
, and
R. Z.
Sagdeev
,
Proc. Nat. Acad. Sci. U. S. A.
114
,
1502
(
2017
).
9.
B.
Li
and
I. H.
Cairns
,
J. Geophys. Res.: Space Phys.
118
,
4748
, (
2013
).
10.
P. A.
Robinson
and
I. H.
Cairns
,
Sol. Phys.
181
,
363
(
1998
).
11.
G.
Thejappa
and
R. J.
MacDowall
,
Apj
498
,
465
(
1998
).
12.
J. O.
Thurgood
and
D.
Tsiklauri
,
Astron. Astrophys.
584
,
A83
(
2015
).
13.
A.
Sgattoni
,
F.
Amiranoff
,
C.
Briand
,
P.
Henri
,
M.
Grech
, and
C.
Riconda
,
Phys. Plasmas
24
,
072103
(
2017
).
14.
P.
Henri
,
A.
Sgattoni
,
C.
Briand
,
F.
Amiranoff
, and
C.
Riconda
,
J. Geophys. Res.: Space Phys.
124
(
3
),
1475
1490
, (
2019
).
15.
G. P.
Chernov
,
Res. Astron. Astrophys.
10
,
821
(
2010
).
16.
A.
Kuznetsov
and
V.
Vlasov
,
Planet. Space Sci.
75
,
167
(
2013
).
17.
V.
Postupaev
,
A. V.
Arzhannikov
,
V.
Astrelin
,
V.
Batkin
,
A. V.
Burdakov
,
V. S.
Burmasov
,
I.
Ivanov
,
M.
Ivantsivsky
,
K.
Kuklin
,
S.
Kuznetsov
,
M.
Makarov
,
K.
Mekler
,
S.
Polosatkin
,
S.
Popov
,
A.
Rovenskikh
,
A.
Shoshin
,
S.
Sinitsky
,
V.
Sklyarov
,
N.
Sorokina
,
A.
Sudnikov
,
Y.
Sulyaev
, and
L.
Vyacheslavov
,
Fusion Sci. Technol.
59
,
144
(
2011
).
18.
A. V.
Arzhannikov
and
I. V.
Timofeev
,
Plasma Phys. Controlled Fusion
54
,
105004
(
2012
).
19.
A. V.
Arzhannikov
,
A. V.
Burdakov
,
V. S.
Burmasov
,
D. E.
Gavrilenko
,
I. A.
Ivanov
,
A. A.
Kasatov
,
S. A.
Kuznetsov
,
K. I.
Mekler
,
S. V.
Polosatkin
,
V. V.
Postupaev
,
A. F.
Rovenskikh
,
S. L.
Sinitsky
,
V. F.
Sklyarov
, and
L. N.
Vyacheslavov
,
Phys. Plasmas
21
,
082106
(
2014
).
20.
A. V.
Arzhannikov
,
A. V.
Burdakov
,
V. S.
Burmasov
,
I. A.
Ivanov
,
A. A.
Kasatov
,
S. A.
Kuznetsov
,
M. A.
Makarov
,
K. I.
Mekler
,
S. V.
Polosatkin
,
S. S.
Popov
,
V. V.
Postupaev
,
A. F.
Rovenskikh
,
S. L.
Sinitsky
,
V. F.
Sklyarov
,
V. D.
Stepanov
,
I. V.
Timofeev
, and
M. K. A.
Thumm
,
IEEE Trans. Terahertz Sci. Technol.
6
,
245
(
2016
).
21.
A. V.
Burdakov
,
A. V.
Arzhannikov
,
V. S.
Burmasov
,
I. A.
Ivanov
,
M. V.
Ivantsivsky
,
I. V.
Kandaurov
,
S. A.
Kuznetsov
,
V. V.
Kurkuchekov
,
K. I.
Mekler
,
S. V.
Polosatkin
,
S. S.
Popov
,
V. V.
Postupaev
,
A. F.
Rovenskikh
,
V. F.
Sklyarov
,
M. K. A.
Thumm
,
Y. A.
Trunev
, and
L. N.
Vyacheslavov
,
Fusion Sci. Technol.
63
,
286
(
2013
).
22.
V. V.
Postupaev
,
A. V.
Burdakov
,
I. A.
Ivanov
,
V. F.
Sklyarov
,
A. V.
Arzhannikov
,
D. Y.
Gavrilenko
,
I. V.
Kandaurov
,
A. A.
Kasatov
,
V. V.
Kurkuchekov
,
K. I.
Mekler
,
S. V.
Polosatkin
,
S. S.
Popov
,
A. F.
Rovenskikh
,
a. V.
Sudnikov
,
Y. S.
Sulyaev
,
Y. A.
Trunev
, and
L. N.
Vyacheslavov
,
Phys. Plasmas
20
,
092304
(
2013
).
23.
I. A.
Ivanov
,
A. V.
Arzhannikov
,
A. V.
Burdakov
,
V. S.
Burmasov
,
D. E.
Gavrilenko
,
A. A.
Kasatov
,
I. V.
Kandaurov
,
V. V.
Kurkuchekov
,
S. A.
Kuznetsov
,
K. I.
Mekler
,
S. V.
Polosatkin
,
S. S.
Popov
,
V. V.
Postupaev
,
A. F.
Rovenskikh
,
V. F.
Sklyarov
,
N. V.
Sorokina
,
Y. A.
Trunev
, and
L. N.
Vyacheslavov
,
Phys. Plasmas
22
,
122302
(
2015
).
24.
I. V.
Timofeev
,
V. V.
Annenkov
, and
A. V.
Arzhannikov
,
Phys. Plasmas
22
,
113109
(
2015
).
25.
V. V.
Annenkov
,
E. P.
Volchok
, and
I. V.
Timofeev
,
Plasma Phys. Controlled Fusion
58
,
045009
(
2016
).
26.
I. V.
Timofeev
,
E. P.
Volchok
, and
V. V.
Annenkov
,
Phys. Plasmas
23
,
083119
(
2016
).
27.
V. V.
Annenkov
,
I. V.
Timofeev
, and
E. P.
Volchok
,
Phys. Plasmas
23
,
053101
(
2016
).
28.
V. V.
Annenkov
,
E. A.
Berendeev
,
E. P.
Volchok
, and
I. V.
Timofeev
,
Plasma Phys. Control. Fusion
61
,
055005
(
2018
).
29.
D. M.
Malaspina
,
I. H.
Cairns
, and
R. E.
Ergun
,
J. Geophys. Res.: Space Phys.
115
,
A01101
, (
2010
).
30.
D. M.
Malaspina
,
D. L.
Newman
,
L. B.
Willson
,
K.
Goetz
,
P. J.
Kellogg
, and
K.
Kerstin
,
J. Geophys. Res.: Space Phys.
118
,
591
, (
2013
).
31.
V. V.
Annenkov
,
I. V.
Timofeev
, and
E. P.
Volchok
,
AIP Conf. Proc.
1771
,
070011
(
2016
).
32.
D.
Ryutov
,
Sov. J. Exp. Theor. Phys.
30
,
131
(
1970
).
33.
K.
Nishikawa
and
D. D.
Ryutov
,
J. Phys. Soc. Jpn.
41
,
1757
(
1976
).
34.
C.
Krafft
,
A. S.
Volokitin
,
V. V.
Krasnoselskikh
, and
T. D.
de Wit
,
J. Geophys. Res.: Space Phys.
119
,
9369
, (
2014
).
35.
R.
Pechhacker
and
D.
Tsiklauri
,
Phys. Plasmas
21
,
012903
(
2014
);
R.
Pechhacker
and
D.
Tsiklauri
, e-print arXiv:1401.6966.
36.
J. O.
Thurgood
and
D.
Tsiklauri
,
J. Plasma Phys.
82
,
905820604
(
2016
);
J. O.
Thurgood
and
D.
Tsiklauri
, e-print arXiv:1612.01780.
37.
H.
Schmitz
and
D.
Tsiklauri
,
Phys. Plasmas
20
,
062903
(
2013
).
38.
R.
Pechhacker
and
D.
Tsiklauri
,
Phys. Plasmas
19
,
112903
(
2012
);
R.
Pechhacker
and
D.
Tsiklauri
, e-print arXiv:1211.6726.
39.
Z. M.
Sheng
,
K.
Mima
, and
J.
Zhang
,
Phys. Plasmas
12
,
123103
(
2005
).
40.
A.
Petrenko
,
K.
Lotov
, and
A.
Sosedkin
,
Nucl. Instrum. Methods Phys. Res. Sect. A
829
,
63
(
2016
).
41.
J.
Faure
,
C.
Rechatin
,
O.
Lundh
,
L.
Ammoura
, and
V.
Malka
,
Phys. Plasmas
17
,
083107
(
2010
).
42.
E.
Lindholm
,
J.
Nickolls
,
S.
Oberman
, and
J.
Montrym
, in
IEEE Micro
28
,
39
55
(
2008
).
43.
K. S.
Yee
, “
Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media
,”
IEEE Trans. Antennas Propag.
14
,
302
307
(
1966
).
44.
J. P.
Boris
, in
Proceeding of the Fourth Conference on Numerical Simulations of Plasmas
(
1970
).
45.
T.
Esirkepov
,
Comput. Phys. Commun.
135
,
144
(
2001
).
46.
V. V.
Annenkov
,
E. A.
Berendeev
,
I. V.
Timofeev
, and
E. P.
Volchok
,
Phys. Plasmas
25
,
113110
(
2018
).
47.
V. T.
Astrelin
,
I. V.
Kandaurov
,
V. V.
Kurkuchekov
, and
Y. A.
Trunev
,
AIP Conf. Proc.
1771
,
030019
(
2016
).
48.
I. V.
Timofeev
and
V. V.
Annenkov
,
Phys. Plasmas
20
,
092123
(
2013
);
I. V.
Timofeev
and
V. V.
Annenkov
, e-print arXiv:1309.3374.
49.
I. V.
Timofeev
,
E. A.
Berendeev
, and
G. I.
Dudnikova
,
Phys. Plasmas
24
,
093114
(
2017
).

Supplementary Material

You do not currently have access to this content.