The communication link of hypersonic vehicles suffers in a complex electromagnetic channel environment with the multipath effect, large Doppler effect caused by the high speed of the hypersonic vehicles, and parasitic modulation caused by vortex turbulence of dynamic plasma sheath. The inherent coupling relationship between these effects exists even though they are with different physical generation mechanisms, which will seriously affect the reception effect of the communication signal from the perspective of the wireless channel. This study investigates the electromagnetic coupling relation between the hypersonic spatial channel and the dynamic plasma sheath channel. The coupling relation is derived in the frequency domain, and the integrated channel simulation model is established as well. Theoretical simulation results demonstrate that the harmonic spectral lines of the plasma sheath power spectrum are moved to the right with the line-of-sight Doppler frequency shift. The spectral spread of the hypersonic spatial channel is coupled to the channel power spectrum of the plasma sheath that forms multiple spectrum extension areas. The new spectral extensions caused by coupling effect will make the traditional narrowband matching receive mode face enormous challenges. The electromagnetic coupling effect in the integrated channel is also verified through channel sounding experiments on ground integrated channel emulation environment composed of plasma simulation device and wireless channel simulator. The deep understanding of this coupling effect is essential to wireless channel modeling and design of adaptive reception methods for hypersonic vehicles.

1.
H.
Zhou
,
X.
Wang
,
B.
Bai
, and
N.
Cui
, “
Reentry guidance with constrained impact for hypersonic weapon by novel particle swarm optimization
,”
Aerosp. Sci. Technol.
78
,
205
213
(
2018
).
2.
W.
Su
,
K.
Li
, and
L.
Chen
, “
Coverage-based cooperative guidance strategy against highly maneuvering target
,”
Aerosp. Sci. Technol.
71
,
147
155
(
2017
).
3.
G.
He
,
Y.
Zhan
,
J.
Zhang
, and
N.
Ge
, “
Characterization of the dynamic effects of the reentry plasma sheath on electromagnetic wave propagation
,”
IEEE Trans. Plasma Sci.
44
(
3
),
232
238
(
2016
).
4.
R.
Sahadeo
,
R.
Subrata
,
E. M.
Thierry
,
S.
Thorsten
,
H.
Vincent Van der
, and
T.
Jan
, “
Blackout analysis of small reentry vehicles
,” AIAA Paper No. 2015-2081,
2015
.
5.
M.
Yang
,
X.
Li
,
K.
Xie
, and
Y.
Liu
, “
Parasitic modulation of electromagnetic signals caused by time-varying plasma
,”
Phys. Plasmas
22
,
022120
(
2015
).
6.
K.
Xie
,
M.
Yang
,
B.
Bai
,
X.
Li
,
H.
Zhou
, and
L.
Guo
, “
Re-entry communication through a plasma sheath using standing wave detection and adaptive data rate control
,”
J. Appl. Phys.
119
,
023301
(
2016
).
7.
S.
Lei
,
G.
Baolong
,
L.
Yanming
, and
L.
Jiangting
, “
Characteristic of plasma sheath channel and its effect on communication
,”
Prog. Electromagn. Res.
123
,
321
336
(
2012
).
8.
X.
Gao
and
B.
Jiang
, “
A matching approach to communicate through the plasma sheath surrounding a hypersonic vehicle
,”
J. Appl. Phys.
117
,
233301
(
2015
).
9.
G.
He
,
Y.
Zhan
, and
N.
Ge
, “
Adaptive transmission method for alleviating the radio blackout problem
,”
Prog. Electromagn. Res.
152
,
127
136
(
2015
).
10.
F.
Dovis
,
R.
Fantini
,
M.
Mondin
, and
P.
Savi
, “
Small-scale fading for high-altitude platform (HAP) propagation channels
,”
IEEE J. Sel. Areas Commun.
20
,
641
647
(
2002
).
11.
E. T.
Michailidis
and
A. G.
Kanatas
, “
Three-dimensional HAP-MIMO channels: Modeling and analysis of space-time correlation
,”
IEEE Trans. Veh. Technol.
59
,
2232
2242
(
2010
).
12.
M.
Yang
,
X.
ping Li
,
D.
Wang
,
Y.
Liu
, and
P.
He
, “
Propagation of phase modulation signals in time-varying plasma
,”
AIP Adv.
6
,
055110
(
2016
).
13.
T. C.
Lin
and
L. K.
Sproul
, “
Influence of reentry turbulent plasma fluctuation on EM wave propagation
,”
Comput. Fluids
35
,
703
711
(
2006
).
14.
G.
He
,
Y.
Zhan
,
N.
Ge
,
Y.
Pei
, and
B.
Wu
, “
Measuring the time-varying channel characteristics of the plasma sheath from the reflected signal
,”
IEEE Trans. Plasma Sci.
42
,
3975
3981
(
2014
).
15.
G. V.
Jandieri
,
A.
Ishimaru
,
V. G.
Jandieri
, and
N. N.
Zhukova
, “
Depolarization of metric radio signals and the spatial spectrum of scattered radiation by magnetized turbulent plasma slab
,”
Prog. Electromagn. Res.
112
,
63
75
(
2011
).
16.
B.
Yao
,
X.
Li
,
L.
Shi
,
Y.
Liu
,
F.
Lei
, and
C.
Zhu
, “
Plasma sheath: An equivalent nonlinear mirror between electron density and transmitted electromagnetic signal
,”
Phys. Plasmas
24
,
102104
(
2017
).
17.
M.
Pätzold
,
Mobile Radio Channels
, 2nd ed. (
John Wiley & Sons, Ltd.
,
Chichester, West Sussex
,
2012
).
18.
M. A.
Kegerise
and
S. J.
Rufer
, “
Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer
,”
Exp. Fluids
57
,
130
(
2016
).
19.
K. D.
Fong
,
X.
Wang
,
Y.
Huang
,
X.
Zhong
,
G. R.
McKiernan
,
R. A.
Fisher
, and
S. P.
Schneider
, “
Second mode suppression in hypersonic boundary layer by roughness: Design and experiments
,”
AIAA J.
53
(
10
),
3138
3144
(
2015
).
20.
C.
Wang
,
C.
Cheng
,
K.
Cheng
, and
L.
Xue
, “
Unsteady behavior of oblique shock train and boundary layer interactions
,”
Aerosp. Sci. Technol.
79
,
212
222
(
2018
).
21.
Y.
Yu
,
H.
Wang
,
N.
Li
,
H.
Zhang
,
Z.
Su
, and
X.
Shao
, “
Finite-time model-assisted active disturbance rejection control with a novel parameters optimizer for hypersonic reentry vehicle subject to multiple disturbances
,”
Aerosp. Sci. Technol.
79
,
588
600
(
2018
).
22.
M.
Estorf
,
R.
Radespiel
,
S.
Schneider
,
H.
Johnson
, and
S.
Hein
, “
Surface-pressure measurements of second-mode instability in quiet hypersonic flow
,” AIAA Paper No. 2008-1153,
2007
.
23.
R.
Feng
,
J.
Li
,
Y.
Wu
,
J.
Zhu
,
X.
Song
, and
X.
Li
, “
Experimental investigation on gliding arc discharge plasma ignition and flame stabilization in scramjet combustor
,”
Aerosp. Sci. Technol.
79
,
145
153
(
2018
).
24.
B.
Yao
,
X.
Li
,
L.
Shi
,
Y.
Liu
, and
C.
Zhu
, “
A multiscale model of reentry plasma sheath and its nonstationary effects on electromagnetic wave propagation
,”
IEEE Trans. Plasma Sci.
45
,
2227
2234
(
2017
).
25.
B.
Yao
,
X.
Li
,
L.
Shi
,
Y.
Liu
, and
B.
Bai
, “
A layered fluctuation model of electron density in plasma sheath and instability effect on electromagnetic wave at Ka band
,”
Aerosp. Sci. Technol.
78
,
480
487
(
2018
).
26.
L.
Shi
,
B.
Yao
,
L.
Zhao
,
X.
Liu
,
M.
Yang
, and
Y.
Liu
, “
An integrative time-varying frequency detection and channel sounding method for dynamic plasma sheath
,”
AIP Adv.
8
,
015103
(
2018
).
27.
F.
Lei
,
X.
Li
,
Y.
Liu
,
D.
Liu
, and
M.
Yang
, “
An amplitude modulated radio frequency plasma generator
,”
Phys. Plasmas
24
,
043513
(
2017
).
You do not currently have access to this content.