The results of an experimental, analytical, and numerical study of the cylindrical shock wave generated by the underwater electrical explosion of copper and aluminum wires are reported. Experiments were conducted using a microsecond timescale generator delivering ∼180 kA pulses with a 1.2 μs rise time. Shadow streak images were used to study the radial expansion of the exploding wire and the generated shock wave. It was found that the shock wave expansion velocity decreases to the velocity of sound in two stages: a fast stage and then a gradual stage. The fast stage occurs during ∼1.5 μs after the maximum of the resistive voltage is reached, and then, a gradual decrease occurs during several tens of microseconds. It was shown that the duration of the fast stage corresponds to the period of time when the main energy deposition into the wire occurs. Hydrodynamic simulations show that the fast decrease in the shock velocity is related to the evolution of the exploded wire's subsonic expansion, which leads to time/spatial compression of the adjacent water layer. For the gradual decrease stage of the shock wave velocity, we developed a simplified model, which considers uniform water density between the wire boundary and the shock wave front. The results of this model agree satisfactorily with the experimentally obtained shock wave trajectory and radial expansion of the wire.

1.
V. E.
Fortov
and
I. T.
Iakubov
,
The Physics of Non-Ideal Plasma
(
World Scientific Publishing Co. Pte. Ltd.
,
Singapore
,
2000
).
2.
B. A.
Remington
,
R. P.
Drake
, and
D. D.
Ryutov
,
Rev. Mod. Phys.
78
,
755
(
2006
).
3.
G.
Huser
,
M.
Koening
,
A.
Benuzzi-Mounaix
,
T.
Vinci
,
B.
Faral
,
M.
Tomossini
,
B.
Telaro
, and
D.
Batani
,
Phys. Plasmas
12
,
060701
(
2005
).
4.
M. D.
Knudson
,
D. L.
Hanson
,
J. E.
Bailey
,
C. A.
Hall
,
J. R.
Asay
, and
W. W.
Anderson
,
Phys. Rev. Lett.
87
,
225501
(
2001
).
5.
Y. B.
Zeldovich
and
Y. P.
Raizer
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
, 2nd ed. (
Academic Press
,
New York and London
,
1966
).
6.
G. B.
Whitham
,
Linear and Nonlinear Waves
(
Wiley
,
New York
,
1974
).
7.
A. C.
Mitchell
and
W. J.
Nelilis
,
Rev. Sci. Instrum.
52
,
347
(
1981
).
8.
F.
Amiranoff
,
R.
Fedosejevs
,
R. F.
Schmalz
,
R.
Sigel
, and
Y.-l.
Teng
,
Phys. Rev. A
32
,
3535
(
1985
).
9.
I. I.
Komissarova
,
G. V.
Ostrovskaya
,
V. N.
Filippov
, and
E. N.
Shedova
,
Zh. Tekh. Fiz.
67
,
138
140
(
1997
).
10.
V. A.
Burtsev
,
N. V.
Kalinin
, and
A. V.
Luchinskii
,
Electrical Explosion of Conductors and Its Applications
(
Energoizdat
,
Moscow
,
1990
).
11.
G. I.
Taylor
,
Proc. R. Soc. London, Ser. A
201
,
159
(
1950
).
12.
L. I.
Sedov
,
Dokl. Akad. Nauk SSSR.
52
,
17
20
(
1946
).
13.
J.
von Neumann
, Ch. 2 Los Alamos Sci. Lab. Tech series, VII Pt. II (
1947
).
14.
G.
Guderley
,
Luftfahrtforschung, Bd.
19
,
S.302
(
1942
).
15.
L. D.
Landau
,
J. Phys. Acad. Sci. USSR
9
,
496
(
1945
).
16.
K. P.
Stanyukovich
, Unsteady Motion of Continuous Media (
Pergamon Press, Inc.
,
New York
,
1960
).
17.
A.
Sakurai
,
J. Phys. Soc. Jpn.
8
,
662
(
1953
).
18.
A.
Sakurai
,
J. Phys. Soc. Jpn.
9
,
256
(
1954
).
19.
S. C.
Lin
,
J. Appl. Phys.
25
,
54
(
1954
).
20.
F. D.
Bennett
,
Phys. Fluids
1
,
347
(
1958
).
21.
D. L.
Jones
,
G. G.
Goyer
, and
M. N.
Plooster
,
J. Geophys. Res.
73
,
3121
, (
1968
).
22.
G. C.
Vlases
and
D. L.
Jones
,
Phys. Fluids
9
,
478
(
1966
).
23.
Y. V.
Skvortsov
,
V. S.
Komelkov
, and
N. M.
Kuznetsov
,
J. Tech. Phys.
30
(
10
),
1165
1177
(
1960
).
24.
E. V.
Krivitskiy
,
V. K.
Sholom
, and
V. P.
Litvinenko
,
Elektron. Obrab. Mater.
4
,
38
42
(
1975
).
25.
E. V.
Krivitskii
,
Dinamika Elektrovzriva v Jidkosti
(
Naukova Dumka
,
Kiev
,
1986
, in Russian).
26.
I. Z.
Okun'
,
J. Tech. Phys.
37
,
1729
(
1967
);
I. Z.
Okun'
,
J. Tech. Phys.
39
,
837
(
1969
);
I. Z.
Okun'
,
J. Tech. Phys.
16
,
293
(
1971
);
I. Z.
Okun'
,
J. Tech. Phys.
41
,
303
(
1971
).
27.
E. V.
Krivitskii
and
V. K.
Sholom
,
Sov. Phys. - Tech. Phys.
19
,
798
(
1974
).
28.
A. W.
DeSilva
and
J. D.
Katsouros
,
Phys. Rev. E
57
,
5945
(
1998
).
29.
I. V.
Lisitsyn
,
T.
Muraki
, and
H.
Akiyama
,
Jpn. J. Appl. Phys., Part 1
36
,
1258
(
1997
).
30.
G.
Rodriguez
,
J. P.
Roberts
,
J. A.
Echave
, and
A. J.
Taylor
,
J. Appl. Phys.
93
,
1791
(
2003
).
31.
D.
Yanuka
,
A.
Rososhek
,
S. N.
Bland
, and
Y. E.
Krasik
,
Appl. Phys. Lett.
111
,
214103
(
2017
).
32.
O.
Antonov
,
S.
Efimov
,
D.
Yanuka
,
M.
Kozlov
,
V. T.
Gurovich
, and
Y. E.
Krasik
,
Appl. Phys. Lett.
102
,
124104
(
2013
).
33.
D.
Yanuka
,
A.
Rososhek
,
S.
Efimov
,
M.
Nitishinskiy
, and
Y. E.
Krasik
,
Appl. Phys. Lett.
109
,
244101
(
2016
).
34.
E. M.
Barkhudarov
,
M. O.
Mdivnishvili
,
I. V.
Sokolov
,
M. I.
Taktakishvili
, and
V. E.
Terekhin
,
J. Fluid Mech.
226
,
497
509
(
1991
).
35.
SESAME:
The Los Alamos National Laboratory Equation-of-State Database, edited by
S. P.
Lyon
and
J. D.
Johnson
, Los Alamos National 347 Laboratory,
Report No. LA-UR-92–3407
,
1992
.
36.
Y. E.
Krasik
,
A.
Grinenko
,
A.
Sayapin
,
S.
Efimov
,
A.
Fedotov
,
V. T.
Gurovich
, and
V. I.
Oreshkin
,
IEEE Trans. Plasma Sci.
36
,
C2
(
2008
).
37.
Y. E.
Krasik
,
A.
Fedotov
,
D.
Sheftman
,
S.
Efimov
,
A.
Sayapin
,
V. T.
Gurovich
,
D.
Veksler
,
G.
Bazalitski
,
S.
Gleizer
,
A.
Grinenko
, and
V. I.
Oreshkin
,
Plasma Sources Sci. Technol.
19
,
034020
(
2010
).
38.
J.
Lubbers
and
R.
Graaff
,
Ultrasound Med. Biol.
24
(
7
),
1065
1068
(
1998
).
39.
A.
Rososhek
,
S.
Efimov
,
S. V.
Tewari
,
D.
Yanuka
,
K.
Khishchenko
, and
Y. E.
Krasik
,
Phys. Plasmas
25
,
062709
(
2018
).
40.
A.
Rososhek
,
S.
Efimov
,
S. V.
Tewari
,
D.
Yanuka
, and
Y. E.
Krasik
,
Phys. Plasmas
25
,
102709
(
2018
).
41.
G.
Bazalitski
,
V. T.
Gurovich
,
A.
Fedotov-Gefen
,
S.
Efimov
, and
Y. E.
Krasik
,
Int. J. Shock Waves, Detonations Explos.
21
,
321
(
2011
).
42.
L.
Gilburd
,
S.
Efimov
,
A.
Fedotov Gefen
,
V. T.
Gurovich
,
G.
Bazalitski
,
O.
Antonov
, and
Y. E.
Krasik
,
Laser Part. Beams
30
,
215
(
2012
).
43.
S.
Efimov
,
V. T.
Gurovich
,
G.
Bazalitski
,
A.
Fedotov
, and
Y. E.
Krasik
,
J. Appl. Phys.
106
,
073308
(
2009
).
You do not currently have access to this content.