The evaluation of an arc quenching medium in circuit breakers usually requires the experimental investigation or the 2D or 3D magnetohydrodynamics simulation of switching arcs, which are expensive and time-consuming. In this work, a fast method is proposed for evaluating the arc quenching performance of gases. In this method, the arc decaying process is divided into three stages based on the results of 1D arc decaying modeling, including the thermal recovery stage, the predielectric recovery stage, and the postdielectric recovery stage. Compared to the previous method, the present method is improved mainly in the three aspects: the thermal recovery stage is featured by the average radial temperature instead of the axial temperature; the criterion of dividing the dielectric recovery stage into the pre- and postdielectric recovery stages is validated by the average electron number density instead of choosing arbitrarily; and the postdielectric recovery stage is characterized by the critical electric field strength Ecr instead of the reduced critical electric field strength (E/N)cr. The case study of SF6, CO2, CF4, and air arcs indicates that the present method yields the same descending order of the thermal recovery rate and the predielectric recovery rate for the four gases as the previous method. Moreover, the present method can avoid negative postdielectric recovery rates, which means that it is more reasonable than the previous method.

1.
A.
Lee
and
L. S.
Frost
,
IEEE Trans. Plasma Sci.
8
(
4
),
362
367
(
1980
).
2.
L.
Zhong
,
A.
Yang
,
X.
Wang
,
D.
Liu
,
Y.
Wu
, and
M.
Rong
,
Phys. Plasmas
21
(
5
),
053506
(
2014
).
3.
A.
Gleizes
,
B.
Rahmani
,
J.
Gonzalez
, and
B.
Liani
,
J. Phys. D: Appl. Phys.
24
(
8
),
1300
(
1991
).
4.
B.
Chervy
,
J.-J.
Gonzalez
, and
A.
Gleizes
,
IEEE Trans. Plasma Sci.
24
(
1
),
210
217
(
1996
).
5.
P. C.
Stoller
,
M.
Seeger
,
A. A.
Iordanidis
, and
G. V.
Naidis
,
IEEE Trans. Plasma Sci.
41
(
8
),
2359
2369
(
2013
).
6.
L.
Zhong
,
X.
Wang
,
M.
Rong
, and
Y.
Cressault
,
Eur. Phys. J. D
70
(
11
),
233
(
2016
).
7.
H.
Kasuya
,
Y.
Kawamura
,
H.
Mizoguchi
,
Y.
Nakamura
,
S.
Yanabu
, and
N.
Nagasaki
,
IEEE Trans. Dielectr. Electr. Insul.
17
(
4
),
1196
1203
(
2010
).
8.
X.
Wang
,
L.
Zhong
,
J.
Yan
,
A.
Yang
,
G.
Han
,
G.
Han
,
Y.
Wu
, and
M.
Rong
,
Eur. Phys. J. D
69
(
10
),
240
(
2015
).
9.
L.
Zhong
,
Y.
Cressault
, and
P.
Teulet
,
Phys. Plasmas
25
(
3
),
033502
(
2018
).
10.
L.
Zhong
,
J.
Wang
,
J.
Xu
,
X.
Wang
, and
M.
Rong
,
Plasma Chem. Plasma Process.
39
(
6
),
1379
1396
(
2019
).
11.
L.
Zhong
,
M.
Rong
,
X.
Wang
,
J.
Wu
,
G.
Han
,
G.
Han
,
Y.
Lu
,
A.
Yang
, and
Y.
Wu
,
AIP Adv.
7
(
7
),
075003
(
2017
).
12.
Y.
Cressault
,
V.
Connord
,
H.
Hingana
,
P.
Teulet
, and
A.
Gleizes
,
J. Phys. D: Appl. Phys.
44
(
49
),
495202
(
2011
).
13.
L. G.
Christophorou
,
J. K.
Olthoff
, and
D. S.
Green
,
Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure SF6
(
US Department of Commerce, Technology Administration
,
National Institute of Standards and Technology
,
1997
).
14.
L.
Zhong
,
Y.
Cressault
, and
P.
Teulet
,
IEEE Trans. Plasma Sci.
47
(
4
),
1835
1840
(
2019
).
15.
H.
Habedank
and
H.
Knobloch
,
IEE Proc.-Sci., Meas. Technol.
148
(
6
),
268
272
(
2001
).
16.
H.
Knobloch
and
H.
Habedank
,
IEE Proc.-Sci., Meas. Technol.
148
(
6
),
273
279
(
2001
).
17.
H.
Urai
,
Y.
Ooshita
,
M.
Koizumi
,
N.
Yaginuma
, and
M.
Tsukushi
, in
2011 1st International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST)
(IEEE, Xi'an, China,
2011
), pp.
559
565
.
18.
Y.
Tanaka
and
T.
Sakuta
,
J. Phys. D: Appl. Phys.
35
(
17
),
2149
2158
(
2002
).
19.
T.
Nakano
,
Y.
Tanaka
,
K.
Murai
,
Y.
Uesugi
,
T.
Ishijima
,
K.
Tomita
,
K.
Suzuki
,
T.
Shinkai
,
T.
Nakano
, and
Y.
Tanaka
,
J. Phys. D: Appl. Phys.
50
,
485602
(
2017
).
20.
P. H.
Schavemaker
and
L.
Van der Sluis
,
IEEE Trans. Power Delivery
15
(
2
),
580
584
(
2000
).
21.
M.
Rong
,
F.
Yang
,
Y.
Wu
,
A. B.
Murphy
,
W.
Wang
, and
J.
Guo
,
IEEE Trans. Plasma Sci.
38
(
9
),
2306
2311
(
2010
).
22.
Q.
Zhang
,
J. D.
Yan
, and
M. T. C.
Fang
,
J. Phys. D: Appl. Phys.
47
(
21
),
215201
(
2014
).
23.
F.
Yang
,
M.
Rong
,
Y.
Wu
,
A. B.
Murphy
,
J.
Pei
,
L.
Wang
,
Z.
Liu
, and
Y.
Liu
,
J. Phys. D: Appl. Phys.
43
(
43
),
434011
(
2010
).
24.
Z.
Sun
,
M.
Rong
,
F.
Yang
,
Y.
Wu
,
Q.
Ma
, and
X.
Wang
,
IEEE Trans. Plasma Sci.
36
(
4
),
1072
1073
(
2008
).
25.
J. L.
Zhang
,
J. D.
Yan
, and
M. T.
Fang
,
IEEE Trans. Plasma Sci.
32
(
3
),
1352
1361
(
2004
).
26.
J.-J.
Gonzalez
,
P.
Freton
,
F.
Reichert
, and
D.
Randrianarivao
,
IEEE Trans. Plasma Sci.
40
(
3
),
936
945
(
2012
).
27.
M. I.
Boulos
,
P.
Fauchais
, and
E.
Pfender
,
Thermal Plasmas: Fundamentals and Applications
(
Springer Science & Business Media
,
New York
,
1994
).
28.
M.
Rong
,
L.
Zhong
,
Y.
Cressault
,
A.
Gleizes
,
X.
Wang
,
F.
Chen
, and
H.
Zheng
,
J. Phys. D: Appl. Phys.
47
(
49
),
495202
(
2014
).
29.
X.
Wang
,
L.
Zhong
,
Y.
Cressault
,
A.
Gleizes
, and
M.
Rong
,
J. Phys. D: Appl. Phys.
47
(
49
),
495201
(
2014
).
30.
L.
Zhong
,
X.
Wang
,
Y.
Cressault
,
P.
Teulet
, and
M.
Rong
,
Phys. Plasmas
23
(
9
),
093514
(
2016
).
31.
W.
Wang
,
M.
Rong
, and
Y.
Wu
,
Plasma Chem. Plasma Process.
34
(
4
),
899
916
(
2014
).
32.
L.
Zhong
,
J.
Wang
,
X.
Wang
, and
M.
Rong
,
AIP Adv.
8
(
8
),
085122
(
2018
).
You do not currently have access to this content.