A Fokker-Planck model for the interaction of fast ions with the thermal electrons in a quasineutral plasma is developed. When the fast ion population has a net flux (i.e., the distribution of fast ions is anisotropic in velocity space), the electron distribution function is perturbed from Maxwellian by collisions with the fast ions, even if the fast ion density is orders of magnitude smaller than the electron density. The Fokker-Planck model is used to derive classical electron transport equations (a generalized Ohm's law and a heat flow equation) that include the effects of the electron-fast ion collisions. It is found that these collisions result in a collisionally induced current term in the transport equations which can be significant. The new transport equations are analyzed in the context of a number of scenarios including α particle heating in inertial confinement fusion and magnetoinertial fusion plasmas as well as ion beam heating of dense plasmas.
References
We use an average ion approximation for a thermal ion population containing both D and T ions.
We use the subscript to denote the fast ion population but remind the reader that our model can be generalized to any species of fast ions, not just α particles.
Numerical calculations show that similar values (discrepancies ∼1%) of and are obtained for fast ion distributions with a broad range of energies as for monoenergetic distributions with an energy equal to the mean of the energy range. Therefore, we assume that the monoenergetic distributions (29) and (30) are good approximations for a wide range of fast ion distributions if we use the mean energy of the distribution to calculate and ensure the same value of drift velocity.